光散射学报, 2023, 35 (3): 245, 网络出版: 2023-11-17  

表面疏水化纸基衬底制备及其增强拉曼光谱特性研究

Preparation and Enhanced Raman Spectroscopic Characteristics of Surface Hydrophobic Paper Substrates
作者单位
西安邮电大学电子工程学院, 陕西 西安 710061
摘要
本文制备得到一种由金银合金纳米颗粒修饰的疏水性纸基表面等离激元增强拉曼光谱衬底, 兼具高密度的纳米颗粒分布和高分子检测灵敏度, 在痕量检测领域具有一定的研究意义。实验上将不同合金比的金银合金纳米颗粒组装到经过疏水处理的滤纸基底上, 以改善衬底的表面等离激元特性。并通过调控沉积循环次数, 制备得到高密度纳米颗粒沉积的疏水纸基衬底。光谱表征结果表明, 所制备衬底能够实现罗丹明6G和结晶紫探针分子的检测极限分别为10-10 M以及10-8 M;衬底对福美双分子的检测极限可达10-7 M。
Abstract
This article describes a hydrophobic paper based substrate modified with gold and silver alloy nanoparticles, which has a high-density distribution of nanoparticles in the deposition range and high detection sensitivity. It has certain research significance in the field of trace detection. Firstly, different proportions of gold and silver alloy nanoparticles were assembled onto a hydrophobic treated filter paper to improve the plasmonic properties of the substrate. At the same time, high-density nanoparticles were deposited onto a hydrophobic paper substrate through cyclic stacking of the deposition process. In the field of trace detection, the detection limit of trace Rhodamine 6G and crystal violet probe molecular solutions can reach 10-10 M and 10-8 M respectively, and this substrate can be used in the field of pesticide molecular detection, and its detection limit for thiram can reach 10-7 M.
参考文献

[1] Ponlamuangdee K, Rattanabut C, Viriyakitpattana N, et al. Fabrication of paper-based SERS substrate using a simple vacuum filtration system for pesticides detection[J]. Analytical Methods, 2022, 14(18): 1765-1773.

[2] 刘二伟, 樊霞, 黄圆萍等. 三维Cu(OH)2-Ag基底的制备及表面增强拉曼特性研究[J]. 光学学报, 2021, 41(16): 1624001. (Liu E W, Fan X, Huang Y P, et al. Fabrication and Surface-Enhanced Raman Spectroscopy Performance of Three-Dimensional Cu(OH)2-Ag Substrate[J]. Acta Optica Sinica, 2021, 41(16): 1624001.

[3] 厉桂华, 张梦雅, 马慧等 低温促进表面等离激元共振效应及肌酐的超灵敏表面增强拉曼散射探测. 物理学报, 2022, 71(14): 146101. (Li G H, Zhang M Y, Ma H, et al. Low temperature-promoted surface plasmon resonance effect and ultrasensitive surface-enhanced Raman scattering detection of creatinine. Acta Phys. Sin., 2022, 71(14): 146101.

[4] Zhou N, Zheng H, Wang Y, et al. Centrifugation assembly proceeded tube-based SERS sensor for field-deployable solution detection[J]. Sensors and Actuators B: Chemical, 2023, 376: 132982.

[5] Kim S, Ansah I B, Park J S, et al. Early and direct detection of bacterial signaling molecules through one-pot Au electrodeposition onto paper-based 3D SERS substrates[J]. Sensors and Actuators B: Chemical, 2022, 358: 131504.

[6] Beeram R, Banerjee D, Narlagiri L. M, et al. Machine learning for rapid quantification of trace analyte molecules using SERS and flexible plasmonic paper substrates[J]. Analytical Methods, 2022, 14(18): 1788-1796.

[7] Skwierczyńska M, Wo'zny P, Runowski M, et al. Optically active plasmonic cellulose fibers based on Au nanorods for SERS applications[J]. Carbohydrate Polymers, 2022, 279: 119010.

[8] Zhao P, Liu H, Zhu P, et al. Multiple cooperative amplification paper SERS aptasensor based on AuNPs/3D succulent-like silver for okadaic acid quantization[J]. Sensors and Actuators B: Chemical, 2021, 344: 130174.

[9] Liu Y, Guan H, Lin S, et al. Plasmonic nanosensor based on Ag nanocubes of high purification by extraction filtration strategy for SERS determination of malachite green in aquaculture water[J]. Sensors and Actuators B: Chemical, 2022, 358: 131515.

[10] Mekonnen M L, Workie Y A, Su W N, et al. Plasmonic paper substrates for point-of-need applications: recent developments and fabrication methods[J]. Sensors and Actuators B: Chemical, 2021, 345: 130401.

[11] Cai J, Li Y, Liu C, et al. Green and controllable synthesis of Au-Ag bimetal nanoparticles by xylan for surface-enhanced Raman scattering[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(18): 15154-15162.

[12] 于鸿艳, 陈丹瑜, 孙欢欢等. 基于玫瑰花状MoS2@Au复合材料的SERS效应研究. 光散射学报, 2023, 35(1): 8-15. (Yu H Y, Chen D Y, Sun H H, et al. SERS Effect Investigation Based on Rose-Shaped MoS2@Au Composite Materials. Chinese Journal of Light Scattering, 2023, 35(1): 8-15.

[13] Xian L, You R, Lu D, et al. Surface-modified paper-based SERS substrates for direct-droplet quantitative determination of trace substances[J]. Cellulose, 2020, 27(3): 1483-1495.

[14] 姚为民, 张德清, 杨永安. 基于超疏水性紫竹梅叶的SERS研究[J]. 光散射学报, 2022, 34(3): 196-202. (Yao W M, Zhang D Q, Yang Y G. SERS Study Based on Super Hydrophobicity of Tradescantia Pallida Leaves. Chinese Journal of Light Scattering, 2022, 34(3): 196-202.

[15] Saini R K, Sharma A K, Agarwal A, et al. Label-free detection of Thiram pesticide on flexible SERS-active substrate[J]. Materials Chemistry and Physics, 2023, 295: 127088.

[16] Tegegne W A, Su W N, Beyene A B, et al. Flexible hydrophobic filter paper-based SERS substrate using silver nanocubes for sensitive and rapid detection of adenine[J]. Microchemical Journal, 2021, 168: 106349.

[17] Dong J, Zhao K, Wang Q, et al. Plasmonic alloy nanochains assembled via dielectrophoresis for ultrasensitive SERS[J]. Optics Express, 2021, 29(22): 36857-36870.

[18] Wu L, Zhang W, Liu C, et al. Strawberry-like SiO2/Ag nanocomposites immersed filter paper as SERS substrate for acrylamide detection[J]. Food Chemistry. 2020, 328: 127106.()

曹怡, 刘雯, 樊冲宇, 方子清, 董军. 表面疏水化纸基衬底制备及其增强拉曼光谱特性研究[J]. 光散射学报, 2023, 35(3): 245. CAO Yi, LIU Wen, FAN Chongyu, FANG Ziqing, DONG Jun. Preparation and Enhanced Raman Spectroscopic Characteristics of Surface Hydrophobic Paper Substrates[J]. The Journal of Light Scattering, 2023, 35(3): 245.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!