激光技术, 2023, 47 (6): 846, 网络出版: 2023-12-05  

基于黑磷的双频带超材料吸收体及其传感特性

Dual-band metamaterial absorber based on black phosphorus and its sensing characteristics
作者单位
衢州职业技术学院 信息工程学院,衢州 324002
摘要
为了实现红外波段的双频带完美吸收,采用将不同电子掺杂浓度的单层带状黑磷在同一平面内交错排列的方法,进行了理论分析和仿真模拟,得到了此器件在红外波段的吸收光谱和传感性能。结果表明,此吸收体可以在波长2 μm~5 μm的红外波段范围内实现双频带的完美吸收(吸收率大于99.9%),此高吸收率是由于入射光波与器件满足了临界耦合条件而形成了共振加强; 在共振波长处,光波被限制在黑磷附近; 此超材料吸收体的双频带特性在其作为传感器使用时具有独特的优势,可以提高传感器的可靠性和准确性; 吸收波峰的偏移量与覆盖在此器件上的未知物质的折射率基本呈线性关系,用此器件测得的未知物质的折射率与实际的折射率的误差在1%以内。该超材料吸收体结构简单,对制作工艺的尺寸精确度要求不高,在红外波段的多频带吸收和传感检测方面将会有广泛的应用。
Abstract
In order to realize dual-band perfect absorption in the infrared wavelength range, single-layer black phosphorus ribbons were arranged in parallel with alternating carrier doping concentration. Theoretical analysis and optical simulation were performed to get absorption spectra and sensing characteristics of the device in the infrared wavelength range. The results show the proposed device can achieve dual-band perfect absorption (>99.9% absorption efficiency) in the 2 μm~5 μm infrared wavelength range. The high absorption is caused by the critical coupling of incident light to the device, and instructive resonance is formed; the on-resonance light is restricted around black phosphorus; the dual-band absorption characteristic of the metamaterial makes it an ideal sensor with high reliability and accuracy; shift of absorption peaks is almost in a linear relationship with change of refractive index of cladding material. The margin of error between the calculated and actual refractive index is within 1%. The simple structure and reasonable tolerance in dimension deviation make the proposed metamaterial a good candidate for applications such as multiple-band absorption and sensing in the infrared wavelength range.
参考文献

[1] DRISCOLL T, ANDREEV G O, BASOV D N, et al. Tuned perme-ability in terahertz split-ring resonators for devices and sensors[J]. Applied Physics Letters, 2007,91(6):062511.

[2] DENG H C, JIANG X W, HUANG X X, et al. A temperature sensor based on composite optical waveguide[J]. Journal of Lightwave Technology,2022,40(8):2663-2669.

[3] TIAN X Y, LI L W, CHEW S X, et al. Cascaded optical microring resonator based auto-correction assisted high resolution microwave photonic sensor[J]. Journal of Lightwave Technology,2021,39(24):7646-7655.

[4] ZHANG Y Y, ZHANG J H, LI Y N, et al. An optical intense 2D electric field sensor using a single LiNO3 crystal[J]. Current Optics and Photonics,2022, 6(2):183-190.

[5] WOO B H, SEO I C, LEE E, et al. Angle-dependent optical perfect absorption and enhanced photoluminescence in excitonic thin films[J]. Optics Express,2017,25(23):28619-28629.

[6] YILDIRIM D U, GHOBADI A, SOYOAN M C, et al. One-way and near-absolute polarization insensitive near perfect absorption by using an all dielectric metasurface[J]. Optics Letters,2020,45(7):2010-2013.

[7] YU H H. Study on structure and properties of polarization-sensitive metamaterial absorber[D]. Changchun: Jilin University,2021:23-34(in Chinese).

[8] WANG R. Research on fabrication and characterization of subwavelength metallic grating-based polarimetric sensor[D].Shanghai: Shanghai Institute of Technical Physics Chinese Academy of Sciences,2016:21-28(in Chinese).

[9] WANG P F, HE F Y, LIU J J, et al. High-Q terahertz all-dielectric metasurface based on bound states in the continuum[J]. Laser Technology, 2022, 46(5):630-635(in Chinese).

[10] ALAEE R, FARHAT M, ROCKSTUHL C, et al. A perfect absorber made of a graphene micro-ribbon metamaterial[J]. Optics Express,2012,20(27):28017-28024.

[11] AKHAVAN A, ABDOLHOSSEINI S, GHAFOORIFARD H, et al. Narrow band total absorber at near-infrared wavelengths using monolayer graphene and sub-wavelength grating based on critical coupling[J]. Journal of Lightwave Technology,2018,36(23):5593-5599.

[12] SHAO Y B. Investigation on optical nonlinear absorption and carrier dynamics of several 2D materials[D].Harbin: Heilongjiang University,2021:11-14(in Chinese).

[13] LI Sh L. Research on the novel tunable terahertz modulator of black phosphorus[D]. Xi’an:Xi’an University of Science and Technology,2021:10-12(in Chinese).

[14] TANG B, YANG N G, HUANG L, et al. Tunable anisotropic perfect enhancement absorption in black phosphorus-based metasurfaces[J]. IEEE Photonics Journal, 2020, 12(3):4500209.

[15] DONG D X, LIU Y W, FEI Y , et al. Designing a nearly perfect infrared absorber in monolayer black phosphorus[J]. Applied Optics, 2019, 58(14):3862-3869.

[16] WANG J, JIANG Y N, HU Zh R. Dual-band and polarization-independent infrared absorber based on two-dimensional black phosphorus metamaterials[J]. Optics Express, 2017, 25(18):22149-22157.

[17] DAI X Y, CHEN H , QIU Ch Y, et al. Ultrasensitive multiple guided-mode biosensor with few-layer black phosphorus[J]. Journal of Lightwave Technology, 2020, 38(6):1564-1571.

[18] CAI Y J, XU K D, FENG N X, et al. Anisotropic infrared plasmo-nic broadband absorber based on graphene-black phosphorus multilayers[J].Optics Express,2020,27(3):3101-3112.

[19] ZHU Y Q, TANG B, JIANG Ch. Tunable ultra-broadband anisotropic absorbers based on multi-layer black phosphorus ribbons[J]. Applied Physics Express, 2019,12(3), 032009.

[20] KHALILZADEH H,SHARIF A H, ANVARHAGHIGAI N. Design of a broadband infrared absorber based on multiple layers of black phosphorus nanoribbons[J]. Journal of the Optical Society of America,2021,B38(12):3920-3928.

[21] WANG Sh Q, LI Sh L, ZHOU Y G, et al. Enhanced terahertz modulation using a plasmonic perfect absorber based on black phosphorus[J]. Applied Optics, 2020, 59(29):9279-9283.

[22] XIAO Sh Y, LIU T T, CHENG L, et al. Tunable anisotropic absorption in hyperbolic metamaterials based on black phosphorous/dielectric multilayer structures[J]. Journal of Lightwave Technology, 2019,37(13):3290-3297.

[23] HE Zh H, LU H, ZHAO J L. Polarization independent and non-reciprocal absorption in multi-layer anisotropic black phosphorus metamaterials[J]. Optics Express, 2021, 29(14):21336-21347.

[24] WU Sh W, JIAN R D, XIONG G P. High-performance polarization-independent black phosphorus refractive index sensors enabled by a single-layer pattern design[J]. Optics Letters, 2022,47(3):517-520.

[25] FANG Y W. Study on new liquid dye laser[D]. Hefei: University of Science and Technology of China, 2021: 3-10(in Chinese).

[26] LIN C, GRASSI R, LOW T, et al. Multilayer black phosphorus as a versatile mid-infrared electro-optic material[J]. Nano Letters, 2016,16(3):1683-1689.

[27] CAI Y J, LI Sh L, ZHOU Y G, et al. Investigation of multi-resonant and anisotropic plasmonic resonances in the stacked graphene-black phosphorus bilayers[J]. Journal of Physics D: Applied Physics, 2020,53(2):025107.

[28] FAN Sh H, SUH W J, JOANNOPOULOS J D. Temporal coupled-mode theory for the Fano resonance in optical resonators[J]. Journal of the Optical Society of America, 2003, A20(3):569-572.

[29] LIU T T, JIANG X J, ZHOU Ch B, et al. Black phosphorus-based anisotropic absorption structure in the mid-infrared[J]. Optics Express, 2019, 27(20):27618-27627.

[30] PANG H Zh, WANG X, WANG J L, et al. Sensing characteristics of dual band terahertz metamaterial absorber sensor[J]. Acta Physica Sinica,2021,70(16):168101(in Chinese).

[31] ZHANG J J, ZHANG Zh J, SONG X X, et al. Infrared plasmonic sensing with anisotropic two-dimensional material borophene[J]. Nanomaterials, 2021,11(5):1165.

[32] ZHANG J A, LI G M, ZHOU Y G, et al. Research on multi-resonant refractive index sensor based on black phosphorus[J]. Journal of Air Force Engineering University (Natural Science Edition), 2022, 23(1):43-48(in Chinese).

[33] ZHOU R L, PENG J, YANG S, et al. Lifetime and nonlinearity of modulated surface plasmon for black phosphorus sensing application[J]. Nanoscale,2018,10:18878-18891.

[34] CHEN H, XIONG L, HU F R, et al. Ultrasensitive and tunable sensor based on plasmon-induced transparency in a black phosphorus metasurface[J]. Plasmonics, 2021,16(4):1071-1077.

[35] LIU Ch, LI H J, XU H, et al. Plasmonic biosensor based on excellently absorbable adjustable plasmon-induced transparency in black phosphorus and graphene metamaterials[J]. New Journal of Physics, 2020,22:073049.

[36] SHEN H Y, LIU Ch Y, LIU F X. et al. Multi-band plasmonic absorber based on hybrid metal-graphene metasurface for refractive index sensing application[J]. Results in Physics, 2021,23:104020.

[37] JIANG X P, CHEN D B, ZHANG Zh J, et al. Dual-channel optical switch, refractive index sensor and slow light device based on a graphene metasurface[J]. Optics Express, 2020, 28(23):34079-34092.

[38] QIU C Y, WU J H, ZHU R R, et al. Dual-band near-perfect metamaterial absorber based on cylinder MoS2-dielectric arrays for sensors[J]. Optics Communications, 2019,451:226-230.

郑盛梅, 江孝伟, 江达飞, 王琳. 基于黑磷的双频带超材料吸收体及其传感特性[J]. 激光技术, 2023, 47(6): 846. ZHENG Shengmei, JIANG Xiaowei, JIANG Dafei, WANG Lin. Dual-band metamaterial absorber based on black phosphorus and its sensing characteristics[J]. Laser Technology, 2023, 47(6): 846.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!