应用激光, 2023, 43 (6): 0001, 网络出版: 2024-02-02  

基于数值模拟的激光增材再制造薄壁件的工艺优化

Numerical Simulation of Process Optimization of Thin-Walled Components by Laser Additive Remanufactured
作者单位
山东建筑大学机电工程学院,山东 济南 250101
摘要
为探究工艺参数、扫描方式、坡口形状对激光增材再制造薄壁件的影响规律,基于ANSYS有限元分析软件,对激光增材再制造316L不锈钢薄壁件的温度场、应力场进行数值模拟分析。结果表明:激光功率、扫描速度过大或过小均会引起残余应力某一分量增大;选用垂直交叉扫描方式可以减小残余应力大小,但可能会引起修复区与基体结合区应力过大,导致裂纹的产生;通过比较两种坡口形状的应力分布,无棱边的坡口形状可以减小结合区的应力集中,并有效减小基板的变形量。最后设计试验,验证不同坡口形状对激光增材再制造试样质量的影响。试验结果表明,弧形相较梯形坡口形状,基材与修复区之间形成了良好的冶金结合,微观组织结构更均匀且硬度也有相应的提升,验证了仿真的正确性。
Abstract
In order to explore the influence of process parameters, scanning method and groove shape on the thin-walled parts manufactured by laser additive manufacturing, based on the ANSYS finite element analysis software, the temperature field and stress field of the thin-walled 316L stainless steel thin-walled parts manufactured by laser additive manufacturing were analyzed by numerical simulation. The results show that a certain component of residual stress will increase if the laser power and scanning speed are too large or too small; the use of vertical cross-scanning method can reduce the residual stress, but it may cause excessive stress in the bonding area between the repaired area and the substrate. This leads to the initiation of cracks. Comparing the stress distribution of the two groove shapes, the edgeless groove shape can reduce the stress concentration in the bonding area and effectively reduce the deformation of the substrate, revealing that the substrate is deformed during the remanufacturing process. Deformation mechanism, and finally designed experiments to verify the influence of different groove shapes on the quality of laser additive remanufactured samples. The experimental results show that a good metallurgical bond is formed between the base material and the repaired area in the shape of the arc groove, which verifies the correctness of the simulation.
参考文献

[1] SHRIVASTAVA A, MUKHERJEE S, CHAKRABORTY S S. Addressing the challenges in remanufacturing by laser-based material deposition techniques[J]. Optics & Laser Technology, 2021, 144: 107404.

[2] ZHANG X C, CUI W Y, LI W, et al. A hybrid process integrating reverse engineering, pre-repair processing, additive manufacturing, and material testing for component remanufacturing[J]. Materials, 2019, 12(12): 1961.

[3] 张群莉,李栋, 张杰, 等. 预制坡口角度对激光增材再制造IN718合金组织与性能的影响[J]. 表面技术, 2019, 48(5): 90-96.ZHANG Q L, LI D, ZHANG J, et al. Influence of pre-fabricated groove angle on microstructure and properties of laser additive remanufactured IN718 alloy[J]. Surface Technology, 2019, 48(5): 90-96.

[4] 李永健. 球墨铸铁件激光增材再制造组织演变规律及性能控制[D]. 哈尔滨: 哈尔滨工业大学,2019.LI Y J. Microstructure evolution law and property control of nodular cast iron castings by laser additive remanufacturing[D].Harbin: Harbin Institute of Technology, 2019.

[5] XIE R S, CHEN G Q, ZHAO Y, et al. In-situ observation and numerical simulation on the transient strain and distortion prediction during additive manufacturing[J]. Journal of Manufacturing Processes, 2019, 38: 494-501.

[6] BROWN D W, BERNARDIN J D, CARPENTER J S, et al. Neutron diffraction measurements of residual stress in additively manufactured stainless steel[J]. Materials Science and Engineering: A, 2016, 678: 291-298.

[7] CHEN B W, MAZUMDER J. Role of process parameters during additive manufacturing by direct metal deposition of Inconel 718[J]. Rapid Prototyping Journal, 2017, 23: 919-929.

[8] LIU Y, YANG Y Q, WANG D. A study on the residual stress during selective laser melting (SLM) of metallic powder[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(1): 647-656.

[9] PARRY L, ASHCROFT I A, WILDMAN R D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation[J]. Additive Manufacturing, 2016, 12: 1-15.

[10] 卞宏友, 董文启, 李英, 等. 工艺参数和扫描路径对激光沉积修复GH4169合金特征尺寸和应力的影响[J]. 应用激光, 2016, 36(6): 649-655.BIAN H Y, DONG W Q, LI Y, et al. Effect of process parameter and scanning path on GH4169 alloy feature sizes and residual stress by laser deposition repair[J]. Applied Laser, 2016, 36(6): 649-655.

[11] SONG J, WU W H, ZHANG L, et al. Role of scanning strategy on residual stress distribution in Ti-6Al-4V alloy prepared by selective laser melting[J]. Optik, 2018, 170: 342-352.

[12] BLACKFORD B, ZAK G, KIM I Y. The effect of scan path on thermal gradient during selective laser melting[J].The International Journal of Advanced Manufacturing Technology, 2020, 110(5/6): 1261-1274.

[13] 刘顺洪, 万鹏腾, 周龙早, 等. 激光焊温度场研究进展和展望[J]. 中国机械工程, 2001, 12(4): 478-481.LIU S H, WAN P T, ZHOU L Z, et al. State-of-the-art of research on the temperature field in laser welding[J]. China Mechanical Engineering, 2001, 12(4): 478-481.

[14] 胡雪兰, 王智隆, 王梦媛, 等. 激光选区熔化Ti6Al4V粉末层结构对能量吸收率影响的数值分析[J]. 应用激光, 2022, 42(1): 21-30.HU X L, WANG Z L, WANG M Y, et al. Influence of powder layer structure on laser absorption of Ti6Al4Vduring selective laser melting[J]. Applied Laser, 2022, 42(1): 21-30.

[15] 王洪泽, 吴一, 王浩伟. 蓝激光在有色金属成形领域的应用研究现状[J]. 中国有色金属学报, 2021, 31(11): 3059-3070.WANG H Z, WU Y, WANG H W. Current status of applying blue laser in nonferrous metals processing[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(11): 3059-3070.

[16] 占焕校, 王勇, 韩涛, 等. 42CrMo钢表面单道激光宽带处理后熔凝层的残余应力[J]. 中国激光, 2008, 35(4): 625-630.ZHAN H X, WANG Y, HAN T, et al. Residual stress analysis of the remelting zone on 42CrMo steel plate in single-pass laser wide-band treatment[J]. Chinese Journal of Lasers, 2008, 35(4): 625-630.

[17] 姚国凤, 陈光南. 激光熔凝加工中瞬时温度场及残余应力数值模拟[J]. 应用激光, 2002, 22(2): 241-243.YAO G F, CHEN G N. Numerical simulation of transient thermal field and residual stress in laser melting process[J]. Applied Laser, 2002, 22(2): 241-243.

[18] 陈瑞芳, 郭乃国, 花银群. 激光冲击参数对残余应力场影响的三维数值模拟[J]. 中国激光, 2008, 35(6): 931-936.CHEN R F, GUO N G, HUA Y Q. Numerical simulation of effects of laser shock parameters on residual stress field induced by laser shock processing[J]. Chinese Journal of Lasers, 2008, 35(6): 931-936.

[19] KOLEVA E, TSONEVSKA T, KOLEVA L, et al. Heat distribution simulation in electron-beam surface modification of 316L stainless steel samples[J]. Journal of Physics: Conference Series, 2020, 1492(1): 012012.

[20] KRUTH J P, DECKERS J, YASA E, et al. Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226(6): 980-991.

王晓伟, 张晓彬, 赵彦华. 基于数值模拟的激光增材再制造薄壁件的工艺优化[J]. 应用激光, 2023, 43(6): 0001. Wang Xiaowei, Zhang Xiaobin, Zhao Yanhua. Numerical Simulation of Process Optimization of Thin-Walled Components by Laser Additive Remanufactured[J]. APPLIED LASER, 2023, 43(6): 0001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!