光散射学报, 2023, 35 (3): 189, 网络出版: 2023-11-17  

针尖增强拉曼散射原理及在科研和教学方面的进展

Principle of Tip-Enhanced Raman Spectroscopy and Advances in Scientific Research and Teaching Education
作者单位
1 北京科技大学数理学院, 北京 100190
2 中国人民解放军总医院神经外科医学部, 北京 100853
摘要
针尖增强拉曼散射技术是一种具有高灵敏、高空间分辨率的表征技术, 作为非接触式无损检测系统, TERS已逐渐成为了许多学科领域的研究热点。本文介绍了TERS技术原理与金属针尖的特点, 对TERS技术在物质和生命科学的研究进展进行了综述, 并对TERS技术在教学科研与学科交叉方面的应用进行了分析, 探讨了TERS技术在化学、物理、生物医学和学科教研融合方面的应用。这些研究进展为TERS技术在物质科学研究以及教育科研中的应用提供了重要的参考, 有助于推动TERS技术进一步的发展和应用。
Abstract
Tip-Enhanced Raman Spectroscopy (TERS) technology is a susceptible characterization technique with high spatial resolution. As a non-contact, non-destructive testing system, TERS has gradually become a research hotspot in many disciplines. This paper introduces the principle of TERS technology and the characteristics of metal needle tips, summarizes the research progress of TERS technology in material and life sciences, analyzes the application of TERS technology in teaching, scientific research, and cross-discipline, and discusses the application of TERS technology in chemistry. , physics, biomedicine, and the application of subject teaching and research integration. These research progresses provide essential references for applying TERS technology in material science research, education, and scientific research and help promote further development and application.
参考文献

[1] Raman C V, Krishnan K S. A new type of secondary radiation[J]. Nature, 1928, 121(3048): 501-502.

[2] 赵星, 郝祺, 倪振华, 等. 单分子表面增强拉曼散射的光谱特性及分析方法[J]. 物理学报, 2021, 70: 137401.(Zhao X, Hao Q, Ni Z H, et al. Single-molecule surface-enhanced Raman spectroscopy (SM-SERS): characteristics and analysis[J]. Acta Physica Sinica, 2021, 70: 137401.

[3] Cao Y, Sun M. Tip-enhanced Raman spectroscopy[J]. Reviews in Physics, 2022: 100067.

[4] Xu H, Bjerneld E J, Kll M, et al. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering[J]. Physical review letters, 1999, 83(21): 4357.

[5] Liu H, Yang Z, Meng L, et al. Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix[J]. Journal of the American Chemical Society, 2014, 136(14): 5332-5341.

[6] Yang J, Qi H, Li A, et al. Potential-driven restructuring of Cu single atoms to nanoparticles for boosting the electrochemical reduction of nitrate to ammonia[J]. Journal of the American Chemical Society, 2022, 144(27): 12062-12071.

[7] Cao Y, Cheng Y, Sun M. Graphene-based SERS for sensor and catalysis[J]. Applied Spectroscopy Reviews, 2023, 58(1): 1-38.

[8] Liu X, Liang Z, Du S, et al. Two compatible acceptors as an alloy model with a halogen-free solvent for efficient ternary polymer solar cells[J]. ACS Applied Materials & Interfaces, 2022, 14(7): 9386-9397.

[9] Burns K H, Elles C G. Ultrafast dynamics of a molecular switch from resonance Raman spectroscopy: Comparing visible and UV excitation[J]. The Journal of Physical Chemistry A, 2022, 126(35): 5932-5939.

[10] Malard L M, Lafeta L, Cunha R S, et al. Studying 2D materials with advanced Raman spectroscopy: CARS, SRS and TERS[J]. Physical Chemistry Chemical Physics, 2021, 23(41): 23428-23444.

[11] Yang B, Chen G, Ghafoor A, et al. Sub-nanometre resolution in single-molecule photoluminescence imaging[J]. Nature Photonics, 2020, 14(11): 693-699.

[12] Kurouski D, Dazzi A, Zenobi R, et al. Infrared and Raman chemical imaging and spectroscopy at the nanoscale[J]. Chemical Society Reviews, 2020, 49(11): 3315-3347.

[13] Wang D, He P, Wang Z, et al. Advances in single cell Raman spectroscopy technologies for biological and environmental applications[J]. Current opinion in biotechnology, 2020, 64: 218-229.

[14] Bhattarai A, Novikova I V, El-Khoury P Z. Tip-enhanced Raman nanographs of plasmonic silver nanoparticles[J]. The Journal of Physical Chemistry C, 2019, 123(45): 27765-27769.

[15] Wang W, Shao F, Krger M, et al. Structure elucidation of 2D polymer monolayers based on crystallization estimates derived from tip-enhanced Raman spectroscopy (TERS) polymerization conversion data[J]. Journal of the American Chemical Society, 2019, 141(25): 9867-9871.

[16] Kang D, Li R, Cao S, et al. Nonlinear optical microscopies: Physical principle and applications[J]. Applied Spectroscopy Reviews, 2021, 56(1): 52-66.

[17] Fleischmann M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical physics letters, 1974, 26(2): 163-166.

[18] Jeanmaire D L, Van Duyne R P. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. Journal of electroanalytical chemistry and interfacial electrochemistry, 1977, 84(1): 1-20.

[19] Albrecht M G, Creighton J A. Anomalously intense Raman spectra of pyridine at a silver electrode[J]. Journal of the american chemical society, 1977, 99(15): 5215-5217.

[20] Xi X, Liang C. Perspective of future SERS clinical application based on current status of Raman spectroscopy clinical trials[J]. Frontiers in Chemistry, 2021, 9: 665841.

[21] Guo J, Zeng F, Guo J, et al. Preparation and application of microfluidic SERS substrate: Challenges and future perspectives[J]. Journal of Materials Science & Technology, 2020, 37: 96-103.

[22] Xie L, Lu J, Liu T, et al. Key role of direct adsorption on SERS sensitivity: synergistic effect among target, aggregating agent, and surface with Au or Ag colloid as surface-enhanced Raman spectroscopy substrate[J]. The journal of physical chemistry letters, 2020, 11(3): 1022-1029.

[23] Burnham N A, Colton R J. Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1989, 7(4): 2906-2913.

[24] Binnig G, Quate C F, Gerber C. Atomic force microscope[J]. Physical review letters, 1986, 56(9): 930.

[25] Leamy H J. Charge collection scanning electron microscopy[J]. Journal of Applied Physics, 1982, 53(6): R51-R80.

[26] Pagès‐Camagna S, Colinart S, Coupry C. Fabrication processes of archaeological Egyptian blue and green pigments enlightened by Raman microscopy and scanning electron microscopy[J]. Journal of Raman Spectroscopy, 1999, 30(4): 313-317.

[27] Hook M S, Hartley P G, Thistlethwaite P J. Fabrication and characterization of spherical zirconia particles for direct force measurement using the atomic force microscope[J]. Langmuir, 1999, 15(19): 6220-6225.

[28] Kneipp K, Kneipp H, Itzkan I, et al. Ultrasensitive chemical analysis by Raman spectroscopy[J]. Chemical reviews, 1999, 99(10): 2957-2976.

[29] Zhang R, Zhang Y, Dong Z C, et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering[J]. Nature, 2013, 498(7452): 82-86.

[30] Pienpinijtham P, Kitahama Y, Ozaki Y. Progress of tip-enhanced Raman scattering for the last two decades and its challenges in very recent years[J]. Nanoscale, 2022, 14(14): 5265-5288.

[31] Meng Z, Tian Z, Yi J. Rapid theoretical method for inverse design on a tip-enhanced Raman spectroscopy (TERS) probe[J]. Optics Express, 2023, 31(10): 15474-15483.

[32] Dong J, Gao W, Han Q, et al. Plasmon-enhanced upconversion photoluminescence: Mechanism and application[J]. Reviews in Physics, 2019, 4: 100026.

[33] Hou W, Cronin S B. A review of surface plasmon resonance‐enhanced photocatalysis[J]. Advanced Functional Materials, 2013, 23(13): 1612-1619.

[34] Yang Z, Aizpurua J, Xu H. Electromagnetic field enhancement in TERS configurations[J]. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 2009, 40(10): 1343-1348.

[35] Ossikovski R, Nguyen Q, Picardi G. Simple model for the polarization effects in tip-enhanced Raman spectroscopy[J]. Physical Review B, 2007, 75(4): 045412.

[36] Etchegoin P G, Galloway C, Le Ru E C. Polarization-dependent effects in surface-enhanced Raman scattering (SERS)[J]. Physical chemistry chemical physics, 2006, 8(22): 2624-2628.

[37] Noguez C. Surface plasmons on metal nanoparticles: the influence of shape and physical environment[J]. The Journal of Physical Chemistry C, 2007, 111(10): 3806-3819.

[38] Anderson N, Hartschuh A, Novotny L. Near-field Raman microscopy[J]. Materials Today, 2005, 8(5): 50-54.

[39] Jiang S, Zhang Y, Zhang R, et al. Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering[J]. Nature nanotechnology, 2015, 10(10): 865-869.

[40] vecová M, Volochanskyi O, Král M, et al. Advantages and drawbacks of the use of immobilized “green-synthesized” silver nanoparticles on gold nanolayer for near-field vibrational spectroscopic study of riboflavin[J]. Applied Surface Science, 2021, 557: 149832.

[41] Kim D H, Lee C, Jeong B G, et al. Fabrication of highly uniform nanoprobe via the automated process for tip-enhanced Raman spectroscopy[J]. Nanophotonics, 2020, 9(9): 2989-2996.

[42] Huang T X, Huang S C, Li M H, et al. Tip-enhanced Raman spectroscopy: tip-related issues[J]. Analytical and bioanalytical chemistry, 2015, 407: 8177-8195.

[43] Wang H, Tian T, Zhang Y, et al. Sequential electrochemical oxidation and site-selective growth of nanoparticles onto AFM probes[J]. Langmuir, 2008, 24(16): 8918-8922.

[44] Kato R, Taguchi K, Yadav R, et al. One-side metal-coated pyramidal cantilever tips for highly reproducible tip-enhanced Raman spectroscopy[J]. Nanotechnology, 2020, 31(33): 335207.

[45] Walke P, Fujita Y, Peeters W, et al. Silver nanowires for highly reproducible cantilever based AFM-TERS microscopy: towards a universal TERS probe[J]. Nanoscale, 2018, 10(16): 7556-7565.

[46] Wen H, Li J, Zhang Q, et al. Length-Controllable Gold-Coated Silver Nanowire Probes for High AFM-TERS Scattering Activity[J]. Nano Letters, 2022.

[47] Taguchi A, Hayazawa N, Furusawa K, et al. Deep‐UV tip‐enhanced Raman scattering[J]. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 2009, 40(9): 1324-1330.

[48] Mahapatra S, Li L, Schultz J F, et al. Methods to fabricate and recycle plasmonic probes for ultrahigh vacuum scanning tunneling microscopy‐based tip‐enhanced Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2021, 52(2): 573-580.

[49] Mrenovi'c D, Tang Z X, Pandey Y, et al. Regioselective Tip-Enhanced Raman Spectroscopy of Lipid Membranes with Sub-Nanometer Axial Resolution[J]. Nano Letters, 2023.

[50] Mrenovi'c D, Ge W, Kumar N, et al. Nanoscale Chemical Imaging of Human Cell Membranes Using Tip‐Enhanced Raman Spectroscopy[J]. Angewandte Chemie, 2022, 134(43): e202210288.

[51] Seweryn S, Skirlińska-Nosek K, Sofińska K, et al. Optimization of tip-enhanced Raman spectroscopy for probing the chemical structure of DNA[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 281: 121595.

[52] Farhat P, Avilés M O, Legge S, et al. Tip-Enhanced Raman Spectroscopy and Tip-Enhanced Photoluminescence of MoS2 Flakes Decorated with Gold Nanoparticles[J]. The Journal of Physical Chemistry C, 2022, 126(16): 7086-7095.

[53] Miranda H, Monken V, Campos J L E, et al. Establishing the excitation field in tip-enhanced Raman spectroscopy to study nanostructures within two-dimensional systems[J]. 2D Materials, 2022, 10(1): 015002.

[54] Fang Y, Zhang Z, Sun M. High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope[J]. Review of Scientific Instruments, 2016, 87(3): 033104.

[55] Meng L, Sun M, Chen J, et al. A nanoplasmonic strategy for precision in-situ measurements of tip-enhanced Raman and fluorescence spectroscopy[J]. Scientific reports, 2016, 6(1): 1-7.

[56] Yano T, Verma P, Saito Y, et al. Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres[J]. Nature Photonics, 2009, 3(8): 473-477.

[57] Zhang Y, Yang B, Ghafoor A, et al. Visually constructing the chemical structure of a single molecule by scanning Raman picoscopy[J]. National Science Review, 2019, 6(6): 1169-1175.

[58] Dong X, Yang B, Zhu R, et al. Tip-induced bond weakening, tilting, and hopping of a single CO molecule on Cu (100)[J]. Light: Advanced Manufacturing, 2022, 3: 1-10.

[59] Kato R, Moriyama T, Umakoshi T, et al. Ultrastable tip-enhanced hyperspectral optical nanoimaging for defect analysis of large-sized WS2 layers[J]. Science Advances, 2022, 8(28): eabo4021.

[60] Ho C S, Jean N, Hogan C A, et al. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning[J]. Nature communications, 2019, 10(1): 4927.

[61] Liu J, Osadchy M, Ashton L, et al. Deep convolutional neural networks for Raman spectrum recognition: a unified solution[J]. Analyst, 2017, 142(21): 4067-4074.

[62] Gautam A, Raman B. Towards effective classification of brain hemorrhagic and ischemic stroke using CNN[J]. Biomedical Signal Processing and Control, 2021, 63: 102178.

[63] Sohn W B, Lee S Y, Kim S. Single‐layer multiple‐kernel‐based convolutional neural network for biological Raman spectral analysis[J]. Journal of Raman Spectroscopy, 2020, 51(3): 414-421.

[64] Kazemzadeh M, Hisey C L, Zargar-Shoshtari K, et al. Deep convolutional neural networks as a unified solution for Raman spectroscopy-based classification in biomedical applications[J]. Optics Communications, 2022, 510: 127977.()

曹艺, 赵虎林, 孙萌涛. 针尖增强拉曼散射原理及在科研和教学方面的进展[J]. 光散射学报, 2023, 35(3): 189. CAO Yi, ZHAO Hulin, SUN Mengtao. Principle of Tip-Enhanced Raman Spectroscopy and Advances in Scientific Research and Teaching Education[J]. The Journal of Light Scattering, 2023, 35(3): 189.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!