光学学报, 2024, 44 (5): 0528001, 网络出版: 2024-03-19  

基于法布里-珀罗干涉和反共振效应的光纤温湿度传感器

Fiber-Optic Temperature and Humidity Sensor Based on Fabry-Perot Interference and Anti-Resonance Effect
作者单位
1 南京信息工程大学电子与信息工程学院,江苏 南京 210044
2 南京信息工程大学江苏省大气环境与装备技术协同创新中心,江苏 南京 210044
摘要
提出并制备了一种基于法布里-珀罗干涉仪(FPI)和反共振(AR)效应的光纤温湿度传感器。将单模光纤(SMF)和端面固化了聚酰亚胺(PI)的带涂层无芯光纤(NCF)插入非封闭硅管两端构建FPI,利用具有相似光程的空气腔和空气-PI混合腔产生光谱叠加的游标效应,显著提高相对湿度检测灵敏度。NCF包层的光和部分折射进丙烯酸树脂涂层的光耦合形成AR,利用温度引起涂层折射率的改变导致AR非透射波长产生漂移,实现对温度的高灵敏度测量。实验结果表明:在10%~80%的相对湿度范围内,相对湿度灵敏度为510.25 pm/%;在26~35 ℃的温度范围内,温度灵敏度可达-4.48 nm/℃。该传感器具有成本低、灵敏度高的优点,在生物医学、健康监测等方面具有重要的应用价值。
Abstract
Objective

The temperature and relative humidity (RH) measurement plays a crucial role in various fields such as food processing, environmental monitoring, and biomedical applications. Fiber optic sensors have been extensively studied due to their prominent advantages of low cost, small size, strong immunity to electromagnetic interference, and high sensitivity compared to traditional electronic hygrometers. Fiber optic sensors based on the Fabry-Perot interferometer (FPI) structure feature simple fabrication process and stable performance. However, previously proposed fiber optic temperature and humidity sensors exhibit low sensitivity or are limited to single-parameter measurements. Therefore, the development of temperature and humidity dual-parameter sensors with stable performance and high sensitivity holds practical significance. The cascaded structure allows for the connection of multiple fiber optic sensing units, enabling simultaneous multi-parameter measurement. The vernier effect is utilized to amplify the humidity measurement sensitivity, while the anti-resonance (AR) effect of polymer-coated no-core fiber (NCF) provides high temperature measurement sensitivity. We propose and fabricate an FPI cascaded AR temperature and humidity dual-parameter fiber optic sensor, which further enhances the temperature and humidity measurement sensitivity and eliminates the need for complex FFT demodulation processes.

Methods

The sensor is composed of cascading an Fabry-Perot (FP) cavity and an NCF with a polymer coating. Meanwhile, the single mode fiber (SMF) and the NCF with polyimide (PI) cured on its end-face are placed into a non-enclosed silicon tube. The non-enclosed silicon allows the humidity-sensitive material PI to have sufficient contact with water molecules in the air. The air cavity is selected as the sensing cavity, while the air-PI mixed cavity serves as the reference cavity. The superimposition of the spectra from the air cavity and the air-PI mixed cavity produces a vernier effect, enabling easy and highly sensitive RH measurement by tracking the spectral envelope of the sensor. The light transmitted through the FP structure further transmits into the NCF. In the NCF segment coated with acrylic resin, the refractive index of the coating is higher than that of the cladding, which causes partial reflection of the light at the interface between the coating and NCF, while the rest is refracted into the coating and reflected at the coating-air interface, which creates MPI inducing the AR effect in the coated NCF. When the external temperature changes, the refractive index of the coating alters, resulting in a wavelength shift of the non-transmitted light for temperature measurement. Real-time temperature and RH can be calculated by adopting a decoupling equation system. The characteristic wavelengths of the reflected and transmitted spectra are measured, and the temperature and RH are simultaneously changed to validate the accuracy of the calculation formula. Additionally, error analysis is performed on the experimental results based on the set standard values, with RH and temperature relative errors of 0.74% and 0.19% respectively, which indicates that the sensor has a certain level of practicality.

Results and Discussions

Under the temperature of 29.5 ℃, the sensor's spectral drift characteristics are tested as the RH increases from 10% to 80% (Fig. 5). As the humidity grows, the resonance wavelength of the FPI envelope shifts towards longer wavelengths, with the RH sensitivity of 510.25 pm/%. The characteristic wavelength of the AR spectrum shows a red shift in the range of 10% to 60% and a blue shift in the range of 60% to 80%. With the humidity kept at 33%, the temperature is increased from 26 ℃ to 35 ℃, and the interference spectrum wavelength is recorded every 1 ℃ (Fig. 6). The envelope wavelength of FPI interference spectra remains unchanged with the rising temperature. Due to the high thermo-optic coefficient of the acrylic resin, the temperature change alters the refractive index of the coating, affecting the non-transmitted wavelength. The characteristic wavelength of the AR spectrum shows a blue shift with increasing temperature and exhibits amplitude variations with a slope of -4.48 nm/℃.

Conclusions

We present a high-sensitivity cascade sensor based on FPI and AR effects for temperature and RH measurement. The sensor incorporates an SMF with a PI film-coated NCF that is inserted into an open-ended silicon tube. By superimposing two FPI spectra with similar optical paths, a vernier effect is generated to amplify the sensor's low sensitivity. The high-sensitivity RH measurement is achieved by detecting the envelope movement. The AR effect is formed by the optical coupling of the NCF high refractive index acrylic resin coating and the low refractive index cladding, which produces a shift in the non-transmitted wavelength due to the refractive index change of the coating caused by temperature. The experimental results show that within the range of 10% to 80%, the RH sensitivity is 510.25 pm/%, which amplifies the original sensitivity by approximately five times. In the range of 26 ℃ to 35 ℃, the temperature sensitivity is -4.48 nm/℃. In summary, the proposed sensor features simple fabrication and high sensitivity and holds potential practical significance in such fields as health monitoring and biomedical applications.

1 引言

相对湿度(RH)的精确测量在食品加工、环境监测和生物医学等领域具有十分重要的作用和意义1-2。相较于传统的电子湿度计,光纤传感器因其成本低、体积小、电磁抗干扰性强、灵敏度高等突出优点而得到深入研究3-4。其中,基于法布里-珀罗干涉仪(FPI)5-6结构的光纤传感器具有工艺简单、性能稳定等优点,尤其对引起法布里-珀罗(FP)腔长度或者折射率变化的物理量非常敏感,被广泛应用于高灵敏度高精度的湿度测量7-8。温度作为重要的物理参量,其变化会直接影响相对湿度的平衡状态9,实际应用中往往需要对温度、相对湿度进行双参数的同步测量。在测量相对湿度的FPI传感器中引入只对温度敏感而对湿度不敏感的光纤布拉格光栅(FBG)10-12成为实现温湿度双参数测量的重要技术手段。2018年,Wang等13报道了一种FBG级联聚酰亚胺(PI)填充中空毛细管尖端的FPI光纤传感器,实验测得的相对湿度和温度灵敏度分别为22.07 pm/%和9.98 pm/℃。然而,FBG传感器受到光纤材料自身低热膨胀系数的影响,其温度灵敏度的进一步提高受到限制。2020年,Tong等14提出一种马赫-曾德尔干涉仪(MZI)15-16和FPI结合的温湿度双参数光纤传感器,将一段单模光纤(SMF)拼接在两个具有大芯偏移的SMF之间,用相对湿度敏感材料石墨烯量子点和聚乙烯醇(GQDs-PVA)包覆,通过监测FPI和MZI的光谱实现温湿度的同时检测,其相对湿度灵敏度和温度灵敏度分别提高到132 pm/%和370 pm/℃。由于该传感器基于单独的湿敏材料实现温湿度测量,因此其温度敏感特性相对较弱。2022年,Li等17提出一种基于级联C型光纤的FPI温湿度传感器,在SMF之间拼接两段C型光纤,两段C型光纤内分别填充了对温度和湿度具有不同敏感性的聚二甲基硅氧烷(PDMS)和聚乙烯醇(PVA)材料,温度和相对湿度灵敏度分别达到-722 pm/℃和-128 pm/%。虽然该传感器在结构上采用不同的敏感材料来提升温度灵敏度,但与前述研究相比,其相对湿度灵敏度偏低,并且在解调过程中需要额外进行滤波以处理光谱数据。

本文提出并制备了一种基于FPI和反共振(AR)效应18-19的级联光纤温湿度传感器。该传感器由空气、PI腔的FP结构和一段带丙烯酸树脂涂层的无芯光纤(NCF)级联而成,利用空气腔和空气-PI混合腔的干涉光谱叠加产生游标效应20,提升相对湿度检测灵敏度;NCF涂层和包层的光耦合产生AR效应,利用涂层材料对温度的敏感特性,实现温度的高灵敏度测量。此外,该传感器通过分别监测FPI反射光谱和AR透射光谱实现温湿度的同时测量,极大地简化了光谱数据处理和系统的复杂度。所提出的传感器具有结构简单、成本低、灵敏度高等显著优势,在高精度的温湿度监测方面具有重要应用。

2 传感器的设计与制备

2.1 传感器的结构及传感原理

图1为光纤温湿度传感器结构示意图,传感器由非封闭硅管(tube)内部的FP腔和聚合物涂层包覆NCF的AR结构级联而成。FPI有3个反射面,入射光Ii经过3个反射面(M1、M2、M3)反射后的3束光(I1、I2、I3)返回到SMF输出IR。FP结构包括3个FP腔:M1和M2之间的空气腔FP1、M2和M3之间的PI腔FP2、M1和M3之间的空气-PI混合腔FP3。空气腔FP1的自由光谱范围(FSR)接近于空气-PI混合空腔FP3的FSR,因此通过空气腔和空气-PI混合腔的光谱叠加产生了一种游标效应21。利用这种游标效应,跟踪传感器反射光谱包络可以很容易地实现高灵敏度的相对湿度测量。透过FP结构的光进一步传播至NCF包层中激发多个L1P0,n(HE1,n)模式,其中反射角为θn的射线轨迹表示一个L1P0,n模式22。裸NCF截面存在多模干涉(MMI)效应,保留了丙烯酸树脂涂层的NCF段由于涂层折射率(RI)大于包层折射率,在涂层与NCF交界面上的光被部分反射(I4),另一部分光经过折射进入涂层后在涂层-空气界面处反射(I5),从而形成多径干涉(MPI),MPI会在涂层包覆的NCF中引起AR效应,涂层中的光场可以认为是MMI和AR的结合23。在NCF内传播的光耦合到引出型SMF(Io)中,当外界温度发生变化时,涂层的折射率改变,从而引起非透射波长漂移。

图 1. 级联传感器结构示意图

Fig. 1. Schematic of cascade sensor

下载图片 查看所有图片

根据三光束干涉分析传感原理,FPI的总强度24可表示为

Iλ=A12+A22+A32-2A1A2cos φ1-2A2A3cos φ2+2A1A3cosφ1+φ2,                               

式中:A1A2A3为反射光振幅;λ为真空中的波长;φ1φ2分别为空气腔、PI腔的相移。

φ1=4πnAirLAirλ, φ2=4πnPILPIλ,

式中:LAirLPI分别为空气腔、PI腔的长度;nAirnPI分别表示空气腔和PI腔的折射率。3个FP腔干涉条纹的FSR表示为

dFSR,1=λ22nAirLAir, dFSR,2=λ22nPILPI,dFSR,3=λ22nAirLAir+2nPILPI

在FPI结构中,具有相似光程的两个FP腔的光谱干涉会产生较大的游标效应包络。随着外界湿度的升高,PI腔体积迅速膨胀,空气腔FP1的腔长减小,干涉谱发生偏移。因此选择FP1作为传感腔,FP3作为参考腔,包络的FSR25dFSR,e)为

dFSR,e=dFSR,1dFSR,3dFSR,3-dFSR,1

FPI的放大系数M对应于周期的放大倍数26,表示为

M=dFSR,edFSR,1=dFSR,3dFSR,3-dFSR,1=nAirLAirnPILPI

因此可以通过监测包络线的位移来获得相对湿度灵敏度,包络灵敏度Se的计算公式为

Se=MS1=MλnAirLAirnPIdLPI+LPIdnPIdκRH=λnPILPInPIdLPI+LPIdnPIdκRH=S2,          

式中:S1S2分别为FP1、FP2腔的灵敏度;κRH为相对湿度。由式(6)可知,相对湿度灵敏度仅和nPILPI有关。

在NCF部分,对于裸NCF段,MMI起主导作用,MMI器件的峰值波长27

λ0=pneffDNCF2L1, p=0,1,2,,

式中:neff=nCladding sin θn为NCF的有效RI;DNCFL1分别为NCF包层的直径和长度;p为自像数。基于MMI效应的NCF透射强度27可表示为

IMMI=10lgη0,nexpi2πneffL1P0,nL1λ2,

式中:η0,n表示通过SMF的基模与NCF中L1P0,n模之间的能量耦合系数。对于涂层的NCF截面,可以认为它是由低折射率二氧化硅被高折射率聚合物包围而形成的波导。处于AR状态的光由于相消干涉在包层中传输,表现为光谱的高透射区。满足共振条件的波长将沿着聚合物涂层向前传播并泄漏出去,非透射波长28可写为

λN=2dnCoating2-nCladding2N,

式中:d为涂层的厚度;nCoatingnCladding分别为NCF涂层和包层的RI;N为共振阶数。忽略温度对二氧化硅包层的影响,AR结构的温度灵敏度可表示为

SAR=2nCoatingdNnCoating2-nCladding2dnCoatingdT

由此可见,传感器的温度敏感性主要取决于NCF聚合物涂层的性质。由AR效应引起的涂层NCF的透射强度29表示为

IAR=10lgη0,n2R¯0,n,

式中:R¯0,n为模式L1P0,n的反射强度比,与长度无关。结合式(8)、(10),AR和MMI效应的透射强度23可表示为

                  I=10lgAη0,n2R¯0,n+Bη0,nexpi2πnCladdingL1P0,nL1λ2,           (12)

式中:AB分别定义为AR和MMI效应的强度系数,且A+B=1。

2.2 传感器的制备

游标效应参考信号与传感信号的FSR差值越小,包络的FSR越大,但dFSR,1dFSR,3过于接近,包络线就会太大而超出仪器的检测范围。NCF越长,AR的干涉谷越尖锐,但也更容易受到应力的影响。综合考虑后选择长度为136 μm的空气腔、16 μm的PI腔以及12.5 mm的NCF。光纤传感器的制作过程如图2所示。首先,将一段硅管(内径为150 μm,外径为350 μm)用体积分数为40%的氢氟酸(HF)溶液腐蚀处理220 min后形成一个腐蚀孔,通过腐蚀孔能使腔内的湿敏材料与空气中的水分子充分接触,如图2(a)所示。其次,将长度为12.5 mm(L1)带聚合物涂层的NCF(包层直径为125 μm,涂层直径为245 μm)与一段SMF(纤芯直径为9 μm,包层直径为125 μm)进行熔接,聚合物涂层为NCF制造商提供的原始丙烯酸树脂涂层,根据光纤熔接过程的需要,去除了NCF熔点附近5 mm的涂层,如图2(b)所示。再次,用一段蘸取了PI溶液(固化率为20%)的光纤对准NCF端面,使之涂覆上厚度约为16 μm(LPI)的PI薄膜,如图2(c)所示。将涂膜后的NCF放入温度为130 ℃的真空干燥室2 h,确保PI膜充分固化。然后,将一段端面平整的SMF插入硅管中,端面固化好PI的光纤结构插入硅管另一端,并通过微位移平台控制端面之间的距离,如图2(d)所示。为了获得更好的光谱,确定SMF和PI端面之间的距离为136 μm(LAir)。最后,使用UV胶将光纤和硅管之间进行固定,形成基于FPI和AR效应的级联光纤结构,如图2(e)所示。其中,SMF纤芯的折射率nCore为1.467,周围空气的折射率nAir为1,PI的折射率nPI为1.7,NCF包层和涂层的折射率nCladdingnCoating分别为1.446和1.510,涂层厚度d为60 µm。

图 2. 级联传感器的制作流程图。(a)HF溶液腐蚀硅管图;(b)SMF和带涂层的NCF熔接图;(c)NCF端面涂覆PI图;(d)光纤插入硅管图;(e)FPI级联AR结构图

Fig. 2. Manufacturing process diagrams of cascaded sensors. (a) Diagram of silicon tube corroded by HF solution; (b) diagram of fusion between SMF and NCF with coating; (c) diagram of PI coated NCF end face; (d) diagram of fiber insertion into silicon tube; (e) diagram of FPI and AR structure cascade

下载图片 查看所有图片

3 实验结果与分析

传感器的实物图和性能测试的实验装置如图3所示。该实验系统主要由光谱范围为1510~1590 nm、分辨率为0.001 nm的SM125光纤光栅解调仪、隔离器、温湿度箱、传感器和计算机组成。光纤光栅解调仪作为光源和光谱仪,通过光纤跳线与传感器连接。为了避免通道2中的光对通道1中反射光谱产生影响,在系统中引入隔离器。温湿度箱由密闭容器中内置JF-956S数显加热平台构成,通过调节箱内水蒸气(H2O)和氮气(N2)的含量来调节相对湿度,并使用GM1362湿度计记录湿度值。温度调控范围为0~400 ℃,相对湿度调控范围为10%~90%,温湿度分辨率分别为0.1 ℃和0.1%。通过改变传感器周围的温度和湿度,用计算机实时监测和记录通道1的FPI反射光谱和通道2的AR透射光谱,以实现传感特性的测量。

图 3. 传感器显微图和测试装置示意图。(a)传感器显微图;(b)实验测试装置图

Fig. 3. Sensor micrograph and test setup diagram. (a) Micrograph of sensor; (b) experimental test setup diagram

下载图片 查看所有图片

图4(a)展示了级联传感器的反射谱,其中黑色实线表示干涉谱,绿色虚线表示包络线,FSR为44.3 nm。图4(b)展示了干涉谱的快速傅里叶变换(FFT)结果,其中出现两个峰,对应的频率分别为0.1126 nm-1和0.137 nm-1。由于峰值点的频率是干涉周期的倒数,因此0.1126 nm-1频率对应的周期为8.88 nm,0.137 nm-1频率对应的周期为7.3 nm,与FP1腔和FP3腔对应的干涉吻合。FP1的FSR为8.88 nm,包络的FSR为44.3 nm,则放大倍数为4.99,其与式(5)计算的M=5吻合。因此,通过监测传感器光谱包络的位移可以获得更高的灵敏度。

图 4. 游标效应。(a)反射光谱;(b)干涉谱的FFT结果

Fig. 4. Vernier effect. (a) Reflectance spectrum; (b) FFT result of interference spectrum

下载图片 查看所有图片

3.1 湿度传感实验

在温度为29.5 ℃的实验条件下,相对湿度从10%逐步上升至80%,每隔10%记录一次特征波长,并对这些数据进行拟合,传感器对相对湿度的响应特性如图5所示。图5(a)显示,干涉光谱下包络随着相对湿度的升高发生了红移。PI的湿膨胀系数为8×10-5%-1,传感腔FP1的腔长随PI的膨胀而减小,FP1的干涉谱发生蓝移,传感FPI的自由光谱范围大于参考FPI的自由光谱范围(FSR1>FSR3),包络的移动方向与FP1干涉谱的移动方向相反30,即红移。包络共振波长与相对湿度的函数关系如图5(b)所示,相对湿度灵敏度为510.25 pm/%,拟合系数为0.99338,表现出良好的线性关系。图5(c)展示了透射光谱中的AR非透射波长随相对湿度的漂移特性,非透射波长在10%~60%范围内红移,在60%~80%范围内蓝移。丙烯酸树脂涂层的厚度d和折射率nCoating都会对相对湿度进行响应,在10%~60%范围内非透射波长主要受涂层吸水膨胀效应的影响,d随着相对湿度的升高而变大,根据式(9),波长发生红移;在60%~80%范围内吸水膨胀效应达到饱和,非透射波长主要受涂层折射率nCoating的影响,nCoating随相对湿度的增加而降低,波长蓝移。特征波长与湿度之间的关系由图5(d)中的二阶多项式拟合,拟合度高,为0.99338。

图 5. 相对湿度响应特性。(a)干涉谱包络;(b)包络位移曲线拟合;(c)透射光谱;(d)非透射波长位移曲线拟合

Fig. 5. Relative humidity response characteristics. (a) Envelope of the interference spectra; (b) fitting of envelope displacement curve; (c) transmittance spectra; (d) fitting of non-transmission wavelength displacement curve

下载图片 查看所有图片

3.2 温度传感实验

在相对湿度为33%的实验条件下,温度从26 ℃升高至35 ℃,每隔1 ℃记录一次特征波长,并对这些数据进行拟合,传感器对温度的响应特性如图6所示。图6(a)显示,26~35 ℃的温度范围内干涉谱包络随温度的升高保持不变,包络共振波长与温度的函数关系如图6(b)所示。式(6)说明游标包络的灵敏度与单个FP2腔(PI腔)的灵敏度完全相等,PI只对湿度敏感,温度在26~35 ℃范围内的变化对PI没有影响,因此,包络的漂移特性不受温度的影响。图6(c)展示了在26~35 ℃温度范围内AR结构的非透射波长,结果显示非透射波长随着温度升高出现了蓝移现象并发生振幅变化。涂层材料为丙烯酸树脂,其热光学系数为-2.9×10-3,远高于二氧化硅材料,因此温度的变化会改变涂层的RI,并影响式(9)中的非透射波长。通过对AR光谱特征波长的跟踪,使用线性拟合法拟合特征波长与温度的函数关系[图6(d)],温度灵敏度为-4.48 nm/℃,拟合系数为0.99848。

图 6. 温度响应特性。(a)干涉谱包络;(b)包络位移曲线拟合;(c)透射光谱;(d)非透射波长位移曲线拟合

Fig. 6. Temperature response characteristics. (a) Envelope of interference spectra; (b) fitting of envelope displacement curve; (c) transmittance spectra; (d) fitting of non-transmission wavelength displacement curve

下载图片 查看所有图片

3.3 实验分析

当温度为29.5 ℃时,相对湿度与FPI包络共振波长和AR非透射波长的函数关系为

λFPI=1527.489+0.51025dRHλAR=-0.00161dRH2+0.20022dRH+1543.023

当相对湿度为33%时,温度对FPI包络共振波长没有影响,和AR非透射波长的函数关系为

λAR=1680.015-4.48T

以温度为29.5 ℃时的测量值为基准,根据上述实验结果和数据拟合,FPI包络共振波长和非透射波长在光谱中的位置为

λFPI=1527.489+0.51025dRHλAR=-0.00161dRH2+0.20022dRH-4.48(T-29.5)+             1543.023

利用光谱仪读出反射谱的λFPI和透射谱的λAR,将实验结果代入式(15)的解耦方程组中,先根据λFPI可直接计算出实际相对湿度,之后根据λAR和相对湿度,可以获得不同相对湿度条件下校准后的温度值T

为了验证计算公式的准确性,同时改变温度和相对湿度,通过测量反射谱和透射谱的特征波长来获得温度和相对湿度。在温度为27.5 ℃、湿度为30%的初始条件下,将温度升高至32 ℃,湿度升高至55%,实验结果如图7所示。反射光谱的包络共振波长从1542.83 nm漂移至1555.76 nm,透射光谱的非透射波长从1556.3 nm漂移至1537.69 nm。根据式(15)计算得到相对湿度为55.406%,温度为32.06 ℃。通过与实际测量的相对湿度和温度进行对比,拟合曲线的结果与实际值吻合,相对误差分别为0.74%和0.19%,验证了所使用计算公式的准确性和可靠性。

图 7. 计算公式测试结果。(a)反射谱;(b)透射谱

Fig. 7. Calculation test results. (a) Reflection spectra; (b) transmission spectra

下载图片 查看所有图片

为了对传感器的稳定性进行测试,将传感器放在温度为30 ℃、相对湿度为30%的环境中,60 min内每15 min记录一次特征波长的位置,结果如图8(a)、(c)所示。时间和特征波长的位置关系如图8(b)、(d)所示。光谱曲线振幅波动较小,FPI倾角和非透射波长的最大波长位移分别为0.12 nm和0.07 nm,证明了该传感器的良好稳定性。

图 8. 稳定性测试结果。(a)(c)特征光谱变化;(b)(d)波长位移

Fig. 8. Stability test results. (a)(c) Characteristic spectral changes; (b)(d) shift of wavelength position

下载图片 查看所有图片

为了评估传感器的重复性,首先在29.5 ℃下,在湿度从10%增加到90%的过程中进行3次测试。FPI包络共振波长和AR非透射波长的位置如图9(a)、(b)所示,并对每组测试结果进行线性拟合。结果表明,在相对湿度上升过程中特征波长位移曲线的一致性较好,拟合曲线吻合,特征光谱的最大波长波动分别为0.25 nm和0.21 nm。后续的温度重复性测试结果如图9(c)、(d)所示,FPI包络共振波长的偏差相对较小,AR倾角的最大波长波动σ约为0.05 nm,3个实验的拟合曲线吻合。上述实验结果表明,该传感器的重复性表现良好。

图 9. 重复性测试结果。(a)(b)湿度重复性试验;(c)(d)温度重复性试验

Fig. 9. Reproducibility test results. (a)(b) Humidity repeatability test results; (c)(d) temperature repeatability test results

下载图片 查看所有图片

将实验结果与其他的光纤温湿度传感器性能进行比较,如表1所示。从表1的对比结果可以看出,利用所提出的传感器结构可获得更高的温度灵敏度和相对湿度灵敏度。该级联传感器可分为FPI和AR两部分结构,FPI结构由SMF和端面固化了PI膜的NCF插入非封闭硅管两端构成,采用光纤端面涂膜的方式解决了毛细管浸入溶液难以控制膜厚的问题,并且PI膜附着在NCF末端表面,具有更好的力学性能。AR结构的制造只需光纤熔接,直接用丙烯酸树脂涂层作为温度敏感材料,解决了表面等离子共振(SPR)4传感器中敏感膜层易脱落、膜层不均匀的问题,保证了传感器的重复性和长期稳定性。该传感器不需要复杂的制备工艺,具有成本低、尺寸紧凑和灵敏度高的特点。

表 1. 温湿度同时测量的相关光纤传感器性能比较

Table 1. Performance comparison of fiber optic sensors for simultaneous measurement of temperature and humidity

TechniqueSensitivity of humidity /(pm·%-1

Range of

humidity /%

Sensitivity of temperature /(pm·℃-1Range of temperature /℃Ref.
FBG and FPI22.0720-909.9815-6513
MZI and FPI-13227.83-76.1737022.8-32.814
PI-coated HB-PM fiber1.825-8011.125-6031
Array of LPGs53035-9846025-3832
Hybrid functional tip43055-90397028-4633
FPI and AR structure510.2510-80-448026-35This work

查看所有表

4 结论

提出一种基于FPI和AR效应的高灵敏度级联传感器,并用于温度和相对湿度测量。该传感器把SMF和端面固化了PI膜的带涂层NCF插入非封闭的硅管中,叠加两个相似光程的FPI光谱以产生游标效应,对传感器的低灵敏度进行放大,通过检测包络的移动来实现相对湿度的高灵敏度测量。NCF高折射率丙烯酸树脂涂层和低折射率包层的光耦合形成AR效应,利用温度引起涂层折射率的改变导致AR非透射波长产生漂移,实现对温度的高灵敏度测量。实验结果表明:在10%~80%的相对湿度范围内,相对湿度灵敏度为510.25 pm/%,相较于原来的灵敏度放大了约5倍;在26~35 ℃的温度范围内,温度灵敏度为-4.48 nm/℃。所提的传感器具有制作简单、灵敏度高等优点,在健康监测、生物医学等领域具有重要的实用价值。

参考文献

[1] Hou M X, Wang N, Chen Y, et al. Laser-induced graphene coated hollow-core fiber for humidity sensing[J]. Sensors and Actuators B, 2022, 359: 131530.

[2] Zhao Y, Tong R J, Chen M Q, et al. Relative humidity sensor based on hollow core fiber filled with GQDs-PVA[J]. Sensors and Actuators B, 2019, 284: 96-102.

[3] Wu S N, Yan G F, Lian Z G, et al. An open-cavity Fabry-Perot interferometer with PVA coating for simultaneous measurement of relative humidity and temperature[J]. Sensors and Actuators B, 2016, 225: 50-56.

[4] 刘卓瑶, 常建华, 倪海彬, 等. 基于表面等离子体共振效应的单模光纤高灵敏度温湿度传感器[J]. 中国激光, 2023, 50(14): 1410001.

    Liu Z Y, Chang J H, Ni H B, et al. High-sensitivity temperature and humidity sensor based on surface plasmon resonance effect in single-mode fiber[J]. Chinese Journal of Lasers, 2023, 50(14): 1410001.

[5] Shi J, Xu D G, Xu W, et al. Humidity sensor based on Fabry-Perot interferometer and intracavity sensing of fiber laser[J]. Journal of Lightwave Technology, 2017, 35(21): 4789-4795.

[6] Chen M Q, Zhao Y, Wei H M, et al. 3D printed castle style Fabry-Perot microcavity on optical fiber tip as a highly sensitive humidity sensor[J]. Sensors and Actuators B, 2021, 328: 128981.

[7] Joe H E, Yun H, Jo S H, et al. A review on optical fiber sensors for environmental monitoring[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2018, 5(1): 173-191.

[8] Sun H, Zhang X L, Yuan L T, et al. An optical fiber Fabry-Perot interferometer sensor for simultaneous measurement of relative humidity and temperature[J]. IEEE Sensors Journal, 2015, 15(5): 2891-2897.

[9] Luo H, Liang L, Ma X C, et al. Relative humidity and temperature sensing characteristics of an optical fiber probe based on hollow-core fiber and calcium alginate hydrogel film[J]. IEEE Sensors Journal, 2018, 18(19): 8022-8027.

[10] Li D R, Wang N N, Zhang T Y, et al. Label-free fiber nanograting sensor for real-time in situ early monitoring of cellular apoptosis[J]. Advanced Photonics, 2022, 4(1): 016001.

[11] Yan Z Q, Zhu S S, Zhang Y J, et al. High-temperature and high-pressure fiber microsphere Fabry-Perot sensor based on vernier effect and FBG[J]. IEEE Sensors Journal, 2023, 23(9): 9301-9307.

[12] 邢心魁, 蒋雪, 刘凡凡, 等. 基于聚酰亚胺材料的光纤布拉格光栅湿度传感器[J]. 激光与光电子学进展, 2022, 59(13): 1328002.

    Xing X K, Jiang X, Liu F F, et al. Fiber Bragg grating humidity sensor based on polyimide material[J]. Laser & Optoelectronics Progress, 2022, 59(13): 1328002.

[13] Wang Y, Huang Q, Zhu W J, et al. Simultaneous measurement of temperature and relative humidity based on FBG and FP interferometer[J]. IEEE Photonics Technology Letters, 2018, 30(9): 833-836.

[14] Tong R J, Zhao Y, Zheng H K, et al. Simultaneous measurement of temperature and relative humidity by compact Mach-Zehnder interferometer and Fabry-Perot interferometer[J]. Measurement, 2020, 155: 107499.

[15] Pei L, Xi Z Y, Bai B, et al. Joint device architecture algorithm codesign of the photonic neural processing unit[J]. Advanced Photonics Nexus, 2023, 2(3): 036014.

[16] Wang Z H, Jiang S C, Yang P, et al. High-sensitivity and high extinction ratio fiber strain sensor with temperature insensitivity by cascaded MZI and FPI[J]. Optics Express, 2023, 31(5): 7073-7089.

[17] Li F, Li X G, Zhou X, et al. Simultaneous measurement of temperature and relative humidity using cascaded C-shaped Fabry-Perot interferometers[J]. Journal of Lightwave Technology, 2022, 40(4): 1209-1215.

[18] Zhang X B, Pan H Y, Bai H W, et al. Transition of Fabry-Perot and antiresonant mechanisms via a SMF-capillary-SMF structure[J]. Optics Letters, 2018, 43(10): 2268-2271.

[19] Liu S Q, Ji Y K, Cui L G, et al. Humidity-insensitive temperature sensor based on a quartz capillary anti-resonant reflection optical waveguide[J]. Optics Express, 2017, 25(16): 18929-18939.

[20] 杨玉强, 高佳乐, 牟小光, 等. 基于聚二甲基硅氧烷增敏的级联双腔温度传感器[J]. 光学学报, 2023, 43(19): 1906001.

    Yang Y Q, Gao J L, Mu X G, et al. Cascaded double-cavity temperature sensor sensitized by polydimethylsiloxane[J]. Acta Optica Sinica, 2023, 43(19): 1906001.

[21] Zhou C, Zhou Q, Wang B, et al. High-sensitivity relative humidity fiber-optic sensor based on an internal-external Fabry-Perot cavity Vernier effect[J]. Optics Express, 2021, 29(8): 11854-11868.

[22] Zhao J, Zhao Y, Cai L. Hybrid fiber-optic sensor for seawater temperature and salinity simultaneous measurements[J]. Journal of Lightwave Technology, 2022, 40(3): 880-886.

[23] Lian X K, Farrell G, Wu Q, et al. Spectral dependence of transmission losses in high-index polymer coated no-core fibers[J]. Journal of Lightwave Technology, 2020, 38(22): 6352-6361.

[24] 孙萌萌, 葛益娴, 沈令闻, 等. 基于电弧放电优化的光纤法珀湿度传感器[J]. 光学学报, 2022, 42(10): 1006002.

    Sun M M, Ge Y X, Shen L W, et al. Optical fiber Fabry-Perot humidity sensor based on arc discharge optimization[J]. Acta Optica Sinica, 2022, 42(10): 1006002.

[25] 张诚, 马雪慧, 赵军发, 等. 基于虚拟游标增敏的法布里-珀罗温度传感器[J]. 中国激光, 2023, 50(13): 1310002.

    Zhang C, Ma X H, Zhao J F, et al. Fabry-Perot temperature sensor based on virtual vernier sensitization[J]. Chinese Journal of Lasers, 2023, 50(13): 1310002.

[26] Zhao Y, Wang P, Lü R Q, et al. Highly sensitive airflow sensor based on Fabry-Perot interferometer and vernier effect[J]. Journal of Lightwave Technology, 2016, 34(23): 5351-5356.

[27] Zhao J, Zhao Y, Lü R Q, et al. Simultaneous measurement of temperature and pressure based on ring-shaped sensing structure with polymer coated no-core fiber[J]. IEEE Sensors Journal, 2021, 21(20): 22783-22791.

[28] Zhao J, Zhao Y, Peng Y, et al. Simultaneous measurement of salinity and temperature based on Fabry-Perot interference and anti-resonance effect[J]. Sensors and Actuators B, 2022, 369: 132248.

[29] Lian X K, Wu Q, Farrell G, et al. High-sensitivity temperature sensor based on anti-resonance in high-index polymer-coated optical fiber interferometers[J]. Optics Letters, 2020, 45(19): 5385-5388.

[30] Hou L T, Li Y, Fu Y M, et al. Ultra-sensitive optical fiber humidity sensor via Au-film-assisted polyvinyl alcohol micro-cavity and vernier effect[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 71: 7002009.

[31] Qin Z G, Qu S, Wang Z Q, et al. A fully distributed fiber optic sensor for simultaneous relative humidity and temperature measurement with polyimide-coated polarization maintaining fiber[J]. Sensors and Actuators B, 2022, 373: 132699.

[32] Hromadka J, Hazlan M N N, Hernandez F U, et al. Simultaneous in situ temperature and relative humidity monitoring in mechanical ventilators using an array of functionalised optical fibre long period grating sensors[J]. Sensors and Actuators B, 2019, 286: 306-314.

[33] He C Y, Korposh S, Correia R, et al. Optical fibre sensor for simultaneous temperature and relative humidity measurement: towards absolute humidity evaluation[J]. Sensors and Actuators B, 2021, 344: 130154.

胡子怡, 常建华, 金澳博, 陈鸣, 徐遥. 基于法布里-珀罗干涉和反共振效应的光纤温湿度传感器[J]. 光学学报, 2024, 44(5): 0528001. Ziyi Hu, Jianhua Chang, Aobo Jin, Ming Chen, Yao Xu. Fiber-Optic Temperature and Humidity Sensor Based on Fabry-Perot Interference and Anti-Resonance Effect[J]. Acta Optica Sinica, 2024, 44(5): 0528001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!