光谱学与光谱分析, 2019, 39 (6): 1785, 网络出版: 2019-07-10  

一种环境友好型的PAEs荧光光谱衍生分子修饰方法

Environment-Friendly PAEs Derivatives Molecular Design Method with Highly Fluorescence Intensity
邱尤丽 1,2,*李鱼 1,2
作者单位
1 华北电力大学环境科学与工程学院, 北京 102206
2 华北电力大学区域能源系统优化教育部重点实验室, 北京 102206
摘要
传统的PAEs荧光检测法主要是借助与具有荧光光谱特征的牛血清蛋白反应而进行的间接荧光检测。 以六种被列入环境优先控制污染物的PAEs为例, 对其苯环上4号位进行分子修饰, 以期获得具有高荧光光谱强度的PAEs衍生物, 利于直接荧光检测, 同时利用分子对接的方法模拟PAEs分子与牛血清蛋白的结合, 计算与牛血清蛋白结合后的PAEs分子荧光光谱强度, 并将其与PAEs衍生物的荧光光谱强度进行比较, 筛选荧光光谱显著增强的PAEs衍生物, 为PAEs衍生物的检测提供理论支持。 研究结果显示: 共设计出30种PAEs衍生物, 其中18种PAEs衍生物的荧光光谱强度增强显著(100%~1850%), 说明PAEs衍生物直接荧光检测的强度相较于PAEs分子间接荧光检测的强度具有显著增强作用; 18种PAEs衍生物的功能特性(以稳定性、 绝缘性作为代表)受到的影响较小, 且PAEs衍生物的环境持久性均有所降低, 生物富集性无明显变化, 迁移性和毒性有不同程度的降低。 此外, PAEs衍生物之间、 与其他具有荧光特性的物质(多环芳烃)之间不存在干扰(最小波数差大于荧光光谱检测分辨率0.30 nm), 占用轨道能量及最正密立根氢原子电荷数是导致PAEs衍生物具有荧光光谱特性的主要控制因素。
Abstract
The traditional fluorescence detection method of PAEs is mainly the indirect fluorescence detection with bovine serum albumin (BSA). The 6 environmental priority control pollutants PAEs were taken as an example, and the 4th position on the benzene ring were introduced by substituent groups for molecular design to obtain PAEs derivatives with high fluorescence spectral intensity, which is advantageous for direct fluorescence detection. Simultaneously, the molecular docking method was used to simulate the binding of PAEs and BSA. The fluorescence intensities of PAEs after binding with BSA were calculated and compared with the fluorescence intensities of PAEs derivatives. The PAEs derivatives with significantly enhanced fluorescence spectra intensity were screened, which can provide theoretical support for the detection of PAEs derivatives. The results showed that 30 PAEs derivatives have been designed, and the fluorescence intensities of 18 PAEs derivatives were significantly increased by 100%~1850%, indicating that the intensities of the direct fluorescence detection of the PAEs derivatives are significantly stronger than those of the traditional fluorescence detection of the PAEs; the functional properties of the 18 PAEs derivatives (represented by stability and insulation) were less affected, and the environmental persistence values of the PAEs derivatives were reduced, and the bioconcentration values did not change significantly, and the mobility values and the toxicity values had different degrees of reduction. In addition, there is no interference between PAEs derivatives and other fluorescent substances (PAHs) (the minimum wave number difference is greater than the fluorescence detection resolution 0.30 nm), and the occupied orbital energies and the mulliken charge numbers are the main controlling factors that lead to the spectral characteristics of PAEs derivatives.
参考文献

[1] Liang J Y, Ning X A, Kong M Y, et al. Environmental Pollution, 2017, 231: 115.

[2] Javier G S, Bárbara S R, Javier H B, et al. Journal of Chromatography A, 2017, 1530: 35.

[3] Yang F, Wang M, Wang Z Y. Chemosphere, 2013, 93: 82.

[4] WANG Yu-wen, CHAI Miao, ZENG Ning, et al(王昱文, 柴 淼, 曾 甯, 等). Environmental Chemistry(环境化学), 2016, 35(2): 364.

[5] Jin D C, Kong X, Cui B J, et al. International Journal of Molecular Sciences. 2013, 14(12): 24046.

[6] BAI Zhou, LI Hao, XIE Jia, et al(白 舟, 李 颢, 谢 佳, 等). Hubei Agricultural Sciences(湖北农业科学), 2012, 51(4): 823.

[7] Jana S, Michaela J, Pavel M. Food Control, 2018, 88: 75.

[8] LI Man-xiu, WANG Hua-yan(李满秀, 王华燕). Chinese Journal of Analytical Chemistry(分析化学), 2005, 33(9): 1315.

[9] CAI Qi-hong, WU Yuan-yuan, LIN Jiang-wei(蔡其洪, 武园园, 林江伟). Chinese Journal of Applied Chemistry(应用化学), 2015, 32(1): 118.

[10] Xie X Y, Wang Z W, Zhou X M, et al. Journal of Hazardous Materials, 2011, 192(3): 1291.

[11] Abedi K R, Lim W Z, Basri M, et al. Protein Journal, 2014, 33(4): 369.

[12] ZHENG Rong, L Tun(郑 蓉, 吕 暾). Acta Chimica Sinica(化学学报), 2011, 69(23): 2882.

[13] Liang C Z, Jin R Y, Gui W J, et al. Environmental Science & Technology, 2007, 41: 6783.

[14] Wu Z W, Yi Z S, Dong L, et al. Environmental Toxicology and Pharmacology, 2016, 41: 259.

[15] Tan S W, Wang D L, Chi Z X, et al. Environmental Toxicology and Pharmacology, 2017, 53: 206.

[16] Shi J H, Pan D Q, Jiang M, et al. Journal of Photochemistry & Photobiology B Biology, 2016, 164: 103.

[17] LIU Hai-chun, LU Shuai, RAN Ting, et al(刘海春, 卢 帅, 冉 挺, 等). Acta Physico-Chimica Sinica(物理化学学报), 2015, 31 (11): 2191.

[18] Tsopelas F, Stergiopoulos C, Tsakanika L A, et al. Ecotoxicology & Environmental Safety, 2017, 139: 150.

[19] Mohamed A A, Ismail S, Mohamed S G, et al. European Journal of Medicinal Chemistry, 2017, 138: 698.

[20] LAI Dan, ZHENG Sheng-wu, ZHAO Su-qing(赖 丹, 郑盛武, 赵肃清). Food Science(食品科学), 2016, 37(5): 114.

[21] WANG Zhong-dong, WANG Yu-tian(王忠东, 王玉田). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2005, 25(10): 1645.

[22] Jiang L, Li Y. Journal of Hazardous Materials, 2016, 307: 202.

[23] Xu Z, Chen Y, Qiu Y L, et al. Chemical Research in Chinese Universities, 2016, 32(3): 348.

[24] Jackson S H, Cowan-Ellsberry C E, Thomas G. Journal of Agricultural and Food Chemistry, 2009, 57(3): 958.

[25] Tong L D, Guo L X, Lv X J, et al. Journal of Molecular Graphics & Modelling, 2016, 71: 1.

[26] Khabeev N S, Shagapov V S, Yumagulova Y A, et al. Acta Astronautica, 2015, 114: 147.

[27] Katarína B, Milena , Ondej M, et al. Environment International, 2017, 108: 1.

[28] CHEN Zhi-kun(陈至坤). Research for Fluorescence Spectrum Measurement of Oil Contaminants Based on Microchannel System. Hebei: Yanshan University(河北: 燕山大学), 2016.

[29] WEI Zan-bin, WANG Jin-chi, JIANG Xia, et al(魏赞斌, 王金池, 江 霞, 等). Chinese Journal of Applied Chemistry(应用化学), 2015, 32(9): 1014.

邱尤丽, 李鱼. 一种环境友好型的PAEs荧光光谱衍生分子修饰方法[J]. 光谱学与光谱分析, 2019, 39(6): 1785. QIU You-li, LI Yu. Environment-Friendly PAEs Derivatives Molecular Design Method with Highly Fluorescence Intensity[J]. Spectroscopy and Spectral Analysis, 2019, 39(6): 1785.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!