激光技术, 2022, 46 (5): 680, 网络出版: 2022-10-14  

基于DFB-EAM的40Gbit/s可集成光网络单元全双工测试

Full duplex test of 40Gbit/s integrable optical network unit based on DFB-EAM
郑枫 1,2陈芯蕊 1,2楚广勇 1,2,*
作者单位
1 江南大学 理学院, 无锡 214122
2 江苏省轻工光电工程技术研究中心, 无锡 214122
摘要
为了兼顾用户端光网络单元的特点和传输速率, 在接收端采用可集成化的相干检测方案替代传统的直接检测方案, 分析了电吸收调制器的偏压特性, 搭建了速率为40Gbit/s的5km双向接入网通信系统, 对以分布式反馈激光器和电吸收调制器为上行发射机的可集成光网络单元进行了传输测试。结果表明, 在直接检测方案前向纠错(FEC)下, 双向传输下行信号接收灵敏度和上行信号接收灵敏度分别达到了-18.31dBm和-17.94dBm; 在相干检测方案FEC下, 双向传输下行信号接收灵敏度和上行信号接收灵敏度分别达到了-32.51dBm和-29.76dBm。相干检测方案的上行和下行接收灵敏度相较于直接检测分别有14.20dB和11.82dB的提升。该研究为未来用户端光网络单元提供了一种高速率可大规模部署的集成化方案。
Abstract
In order to take into account the characteristics of the optical network unit and the transmission rate of the user end, an integrable coherent detection scheme was used to replace the traditional direct detection scheme at the receiving end. The bias characteristics of the electro-absorption modulator (EAM) was analyzed. A 5km bidirectional access network communication system with a rate of 40Gbit/s was built, and the transmission test of the integrable optical network unit with the distributed feedback (DFB) laser and the EAM as the upstream transmitter was carried out. Under the direct detection scheme and forward error correction (FEC), the receiving sensitivity of downstream signal and upstream signal of bidirectional transmission are -18.31dBm and -17.94dBm respectively. Under the coherent detection scheme and FEC, the receiving sensitivities of downstream and upstream signals are -32.51dBm and -29.76dBm, respectively. The results show that the upstream and downstream receiving sensitivities of the coherent detection scheme are 14.20dB and 11.82dB higher than those of the direct detection scheme, respectively. The result of this work provides a high-speed and large-scale deployment integrated scheme for the optical network unit of the future client.
参考文献

[1] LU Y P, WANG J P. Digital gap or information welfare: The effect of internet use on individual subjective well-being in China[J]. Economic Perspectives, 2020, 708(2): 61-75(in Chinese).

[2] VEEN D V, HOUTSMA V. Strategies for economical next-generation 50G and 100G passive optical networks [J]. Journal of Optical Communications and Networking, 2020, 12(1): A95.

[3] WANG X, NIU P, ZHENG Z, et al. Miniature acoustic resonator induced in-situ electrode foul removal enabling the continuous electrochemical measurements[C]//2021 IEEE 34th International Confe-rence on Micro Electro Mechanical Systems. New York, USA: IEEE, 2021: 1019-1022.

[4] LIU X, EFFENBERGER F. Emerging optical access network techno-logies for 5G wireless[J]. Journal of Optical Communications & Networking, 2016, B8(12): 70-79.

[5] XU G Y, HU L F, DENG C R, et al. Construction of dynamic model of semiconductor optical amplifier based on iterative algorithm[J]. Laser Technology, 2020, 44(2): 255-260(in Chinese).

[6] CHEN X R, CHU G Y. Research on optimization of optical network unit of full-duplex direct modulation laser[J]. Laser & Infrared, 2021, 51(7): 865-870(in Chinese).

[7] LIU L X, XU L, WANG Q, et al. Measurement of the chirp parameter in DFB semiconductor laser diode[J]. Journal of Henan Normal University(Natural Science Edition), 2018, 46(6): 34-38(in Chin-ese).

[8] FENG S Ch, FAN Y Y, CHEN X Y, et al. Design of multicarrier optical source using cascaded electro-absorption modulator and phase modulator[J]. Chinese Journal of Lasers, 2016,43(11): 1106001(in Chinese).

[9] BAIER M, GROTE N, MOEHRLE M, et al. Integrated transmitter devices on InP exploiting electro-absorption modulation[J]. PHOTONIX, 2020, 1(1): 1-11.

[10] KOBAYASHI W, FUJISAWA T, ITO T,et al.Advantages of EADFB laser for 25Gbaud/s 4-PAM (50Gbit/s) modulation and 10km single-mode fibre transmission[J]. Electronics Letters, 2014, 50(9): 683-685.

[11] LERIN A, CHU G Y, POLO V, et al. Chip integrated DFB-EAM for directly phase modulation performance improvement in UDWDM-PON[C]//2015 European Conference on Optical Communication (ECOC). New York, USA: IEEE, 2015: 1-3.

[12] CHEN X R, CHU G Y. 10Gbit/s bidirectional transmission with an optimized SOA and a SOA-EAM based ONU[J]. Applied Sciences, 2020, 10(24): 8960.

[13] LIU Zh, LI X L, NIU Ch Q, et al. 56 Gbps high-speed Ge electro-absorption modulator[J]. Photonics Research, 2020, 8(10): 131-135.

[14] EL-HAGEEN H M, KUPPUSAMY P G, ALATWI A M, et al. Di-fferent modulation schemes for direct and external modulators based on various laser sources[J]. Journal of Optical Communications, 2020, 29(15): 1-10.

[15] BANJHAL S, MEHRA R. Design and simulation of reflective modulators based on semiconductor optical amplifier and electro-absorption modulator[C]//2015 International Conference on Computer, Communication and Control (IC4). New York, USA: IEEE, 2015: 1-6.

[16] SHINDO T, FUJIWARA N, KANAZAWA S, et al. High power and high speed soa assisted extended reach EADFB laser (AXEL) for 53Gbaud PAM4 fiber-amplifier-less 60km optical link[J]. Journal of Lightwave Technology, 2020, 38(11): 2984-2991.

[17] REN M Zh, XU T W, ZHANG F X, et al. Statistical properties of rayleigh backscattered light in single-mode fibers caused by a highly coherent laser[J]. Chinese Journal of Lasers, 2013,40(1): 0105001(in Chinese).

[18] TABARES J A, GHASEMI S, POLO V, et al. Simplified carrier recovery for intradyne optical PSK receivers in udWDM-PON[J]. Journal of Lightwave Technology, 2018, 36(14): 2941-2947.

[19] MASATO A, YOSHIDA C, KOSUKE T, et al. Single-channel 15.3 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150km with a spectral efficiency of 8.3bit/s/Hz[J]. Optics Express, 2019, 27(20): 28952-28967.

郑枫, 陈芯蕊, 楚广勇. 基于DFB-EAM的40Gbit/s可集成光网络单元全双工测试[J]. 激光技术, 2022, 46(5): 680. ZHENG Feng, CHEN Xinrui, CHU Guangyong. Full duplex test of 40Gbit/s integrable optical network unit based on DFB-EAM[J]. Laser Technology, 2022, 46(5): 680.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!