光散射学报, 2023, 35 (3): 238, 网络出版: 2023-11-17  

静电纺丝技术制备热耐受性SERS基底

Preparation of Thermotolerant SERS Substrate by Electrospinning
作者单位
上海师范大学资源化学教育部重点实验室, 化学与材料科学学院 上海200234
摘要
本文以纳米金为模板, 通过替代化学反应, 合成 Au@AgNPs 核壳纳米粒子, 将其负载在聚(苯乙烯-丁二烯) (SB)电纺纤维膜上, 制得表面增强拉曼散射(SERS) 柔性基底Au@AgNPs/SB。利用紫外-可见光谱 (UV-vis)、透射电子显微镜 (TEM)、扫描电子显微镜 (SEM)和拉曼光谱表征了基底的形貌结构和光谱性能。以罗丹明6G为拉曼分子探针, 将Au@AgNPs/SB基底经常温-升温过程处理后进行光谱实验, 结果表明该基底热耐受性好, 能用于较高温度下前处理样品, 有利于提高检测的灵敏度。以农药福美双作为研究对象, 通过对其进行加热实验, SERS检测限可低至3.65×10-8 mol/L。
Abstract
In this paper,Au@AgNPs core-shell nanoparticles are synthesized by using nano-Au seeds template method and then loaded on the poly (styrene butadiene) (SB) fiber membrane made-by electrospinning to prepare Au@AgNPs /SB as the surface enhanced Raman scattering (SERS) flexible substrate. Ultraviolet-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman spectroscopy are used to characterize the morphology and spectral properties of such substrate. Using Rhodamine 6G as a Raman molecular probe, on Au@AgNPs, SERS spectra are recorded after temperature-rise process, showing good thermal tolerance of Au@AgNPs /SB substrate. Therefore, Au@AgNPs /SB substrate could be utilized to detect the target samples pretreated samples at relatively high temperatures, and is conducive to improving the detection sensitivity. Taking the SERS detection of thiram as proof of concept, the limit of detection can be as low as 3.65×10-9 mol/L by using Au@AgNPs /SB extraction of thiram in a hot solution.
参考文献

[1] GUO P Z, SIKDAR D, HUANG X Q, et al. Plasmonic Core-Shell Nanoparticles for SERS Detection of the Pesticide Thiram: Size-and Shape-Dependent Raman Enhancement[J]. Nanoscale, 2015, 7(7):2862-2868.

[2] FERNANDEZ C, REVIEJO A J, POLO L M, et al. HPLC-Electrochemical Detection with Graphite-Poly (Tetrafluoroethylene) Electrode Determination of the Fungicides Thiram and Disulfiram[J]. Talanta, 1996, 43(8):1341-1348.

[3] WU H X, LUO Yi, HOU C J, et al. Flexible Bipyramid-Aunps Based SERS Tape Sensing Strategy for Detecting Methyl Parathion on Vegetable and Fruit Surface[J]. Sensors and Actuators B: Chemical, 2019, 285(123-128).

[4] ZHONG L B, YIN J, ZHENG Y M, et al. Self-Assembly of Au Nanoparticles on PMMA Template as Flexible, Transparent, and Highly Active SERS Substrates[J]. Analytical chemistry, 2014, 86(13):6262-6267.

[5] WU W, LIU L, DAI Z G, et al. Low-Cost, Disposable, Flexible and Highly Reproducible Screen Printed SERS Substrates for the Detection of Various Chemicals[J]. Scientific reports, 2015, 5(1):1-10.

[6] XIONG Z Y, LIN M S, LIN H T, et al. Facile Synthesis of Cellulose Nanofiber Nanocomposite as a Sers Substrate for Detection of Thiram in Juice[J]. Carbohydrate Polymers, 2018, 189(79-86).

[7] LIN S, LIN X, HAN S Q G W, et al. Width and Length Dependent Sers Performance of Core-Shell Au@Ag Nanorod Self-Assembled Monolayers[J]. Journal of Alloys and Compounds, 2019, 805(318-326).

[8] WU H X, LUO Y, HOU C J, et al. Flexible Bipyramid-AuNPs Based SERS Tape Sensing Strategy for Detecting Methyl Parathion on Vegetable and Fruit Surface[J]. Sensors and Actuators B: Chemical, 2019, 285(123-128).

[9] ZHONG L B, YIN J, ZHENG Y M, et al. Self-Assembly of Au Nanoparticles on PMMA Template as Flexible, Transparent, and Highly Active SERS Substrates[J]. Analytical chemistry, 2014, 86(13):6262-6267.

[10] WU Wei, LIU Li, DAI Z G, et al. Low-Cost, Disposable, Flexible and Highly Reproducible Screen Printed SERS Substrates for the Detection of Various Chemicals[J]. Scientific reports, 2015, 5(1):1-10.

[11] POLAVARAPU L and LUIS L M .Towards Low-Cost Flexible Substrates for Nanoplasmonic Sensing[J]. Phys Chem Chem Phys, 2013, 15(15):5288-5300.

[12] JEONG J W, YANG S R, HUR Y H, et al. High-Resolution Nanotransfer Printing Applicable to Diverse Surfaces Via Interface-Targeted Adhesion Switching[J]. Nature communications, 2014, 5(1):5387.

[13] CHEN Y, GE FY, GUANG S Y, et al. Low-Cost and Large-Scale Flexible SERS-Cotton Fabric as a Wipe Substrate for Surface Trace Analysis[J]. Applied Surface Science, 2018, 436(111-116).

[14] CHAMUAH N, BHUYAN N, DAS P P, et al. Gold-Coated Electrospun PVA Nanofibers as SERS Substrate for Detection of Pesticides[J]. Sensors and Actuators B: Chemical, 2018, 273(710-717).

[15] ZHANG C L, LV K P, CONG H P, et al. Controlled Assemblies of Gold Nanorods in PVA Nanofiber Matrix as Flexible Free-Standing SERS Substrates by Electrospinning[J]. Small, 2012, 8(5):648-653.

[16] LIU Z C, JIA L, YAN Z D, et al. Plasma-Treated Electrospun Nanofibers as a Template for the Electrostatic Assembly of Silver Nanoparticles[J]. New J Chem, 2018, 42(13):11185-11191.

[17] LI X F, CAO M H, ZHANG H, et al. Surface-Enhanced Raman Scattering-Active Substrates of Electrospun Polyvinyl Alcohol/Gold-Silver Nanofibers[J]. Journal of colloid and interface science, 2012, 382(1):28-35.

[18] ZHANG Z J, WU Y P, WANG Z H, et al. Fabrication of Silver Nanoparticles Embedded into Polyvinyl Alcohol (Ag/PVA) Composite Nanofibrous Films through Electrospinning for Antibacterial and Surface-Enhanced Raman Scattering (SERS) Activities[J]. Materials Science and Engineering: C, 2016, 69(462-469).

[19] ZHANG C L, LV K P, HUANG H T, et al. Co-Assembly of Au Nanorods with Ag Nanowires within Polymer Nanofiber Matrix for Enhanced SERS Property by Electrospinning[J]. Nanoscale, 2012, 4(17):5348-5355.

[20] WU H, LIN D D and PAN W. High Performance Surface-Enhanced Raman Scattering Substrate Combining Low Dimensional and Hierarchical Nanostructures[J]. Langmuir, 2010, 26(10):6865-6868.

[21] LIU Z C, JIA L, YAN Z D, et al. Plasma-Treated Electrospun Nanofibers as a Template for the Electrostatic Assembly of Silver Nanoparticles[J]. New J Chem, 2018, 42(13):11185-11191.

[22] CHAMUAH N, BHUYAN N, DAS P P, et al. Gold-Coated Electrospun Pva Nanofibers as SERS Substrate for Detection of Pesticides[J]. Sensors and Actuators B: Chemical, 2018, 273(710-717).

[23] TURKEVICH. Anthony Chemical Analysis of Surfaces by Use of Large-Angle Scattering of Heavy Charged Particles[J]. Science, 1961, 134(3480):672-674.

[24] LIU B H, HAN G G, ZHANG Z P, et al. Shell Thickness-Dependent Raman Enhancement for Rapid Identification and Detection of Pesticide Residues at Fruit Peels[J]. Analytical chemistry, 2012, 84(1):255-261.

[25] SHAO F, CAO J Y, YING Y, et al. Preparation of Hydrophobic Film by Electrospinning for Rapid SERS Detection of Trace Triazophos[J]. Sensors, 2020, 20(15):4120.

[26] XU S, SABINO F P, JANOTTI A, et al. Unique Surface Enhanced Raman Scattering Substrate for the Study of Arsenic Speciation and Detection[J]. Journal of Physical Chemistry A, 2018, 122(49):9474-9482.

[27] NIU C Y, ZOU B F, WANG Y Q, et al. Highly Sensitive and Reproducible SERS Performance from Uniform Film Assembled by Magnetic Noble Metal Composite Microspheres[J]. Langmuir, 2016, 32(3):858-863.

[28] WANG Q, WU D and CHEN Z D. Ag Dendritic Nanostructures for Rapid Detection of Thiram Based on Surface-Enhanced Raman Scattering[J]. Rsc Adv, 2015, 5(86):70553-70557.

[29] ZHANG L, WANG B, ZHU G, et al. Synthesis of Silver Nanowires as a SERS Substrate for the Detection of Pesticide Thiram[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 133(411-416).

[30] LIU S J, JIANG C L, YANG B, et al. Controlled Depositing of Silver Nanoparticles on Flexible Film and Its Application in Ultrasensitive Detection[J]. Rsc Adv, 2014, 4(80):42358-42363.

[31] ZHANG Y Z, WANG Z Y, WU L, et al. Rapid Simultaneous Detection of Multi-Pesticide Residues on Apple Using Sers Technique[J]. Analyst, 2014, 139(20):5148-5154.()

李朵朵, 邵菲, 胡森, 郭小玉, 文颖, 杨海峰. 静电纺丝技术制备热耐受性SERS基底[J]. 光散射学报, 2023, 35(3): 238. LI Duoduo, SHAO Fei, HU Sen, GUO Xiaoyu, WEN Ying, YANG Haifeng. Preparation of Thermotolerant SERS Substrate by Electrospinning[J]. The Journal of Light Scattering, 2023, 35(3): 238.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!