光通信研究, 2021 (3): 64, 网络出版: 2021-08-23  

可见光通信中继技术研究

Research on Relay Technology of Visible Light Communication
作者单位
1 江西开放大学 现代教育技术中心, 南昌 330046
2 南昌大学 信息工程学院, 南昌 330031
3 武汉大学 电子信息学院, 武汉 430072
摘要
可见光通信(VLC)作为射频通信的有效补充技术, 可提供高速率、超低时延、绿色环保、低成本和安全可靠的通信服务。但覆盖范围受限和链路遮挡已成为VLC系统可靠通信的瓶颈。针对上述问题, 在VLC中采用中继技术是一种有效方法。文章从中继技术的功能特性出发, 分析中继协作的VLC系统模型, 对中继协作的VLC系统的应用场景、组网方式、转发策略、调制方式、工作模式和多址接入等关键技术进行综述, 并对采用相应关键技术中继协作的VLC系统的可靠性、安全性和能效性进行分析, 最后提出采用非正交多址、多输入多输出和全双工模式的多中继协作的VLC异构网络是未来通信网络的研究重点和方向。
Abstract
As a beneficial supplement to radio frequency communication, Visible Light Communication (VLC) can provide high-speed, ultra-low delay, green, low-cost, safe and reliable communication services. However, limited coverage range has become the bottleneck of long distance and reliable communication in VLC system. Since the coverage range of VLC is limited, an effective method is proposed to use relay technology in VLC system. The paper starts from the functional characteristics of relay technology, and analyzes the relay system model. Then we give a review on several key technologies of relay-assisted VLC, including the application scenario, network mode, transfer agreement, modulation mode, working mode and non-orthogonal multiple access. The reliable performance, safety and energy efficiency with the corresponding key technologies are analyzed. Finally, we point out a research emphasis and direction in VLC by adopting the heterogeneous network, non-orthogonal multiple access, multi-input and multi-output, full-duplex mode multiple and relays collaboration for the next generation communication network.
参考文献

[1] Andrews J G, Buzzi S, Choi W, et al. What will 5G be? [J]. IEEE Journal on Selected Areas in Communications, 2014,32(6):1065-1082.

[2] Liu X D, Chen Z Z, Wang Y H, et al. BER Analysis of NOMA-enabled Visible Light Communication Systems with Different Modulations [J].IEEE Transactions on Vehicular Technology,2019,68(11):10807-10821.

[3] Uysal M,Miramirkhani F,Narmanlioglu O,et al.IEEE 802.15.7R1 Reference Channel Models for Visible Light Communications [J]. IEEE Communications Magazine, 2017, 55(1):212-217.

[4] 中国信息与电子工程科技术发展战略研究中心. 中国电子信息工程技术发展研究可见光通信专题[M]. 北京: 科学出版社, 2020.

[5] Pathak P H, Feng X T, Hu P F, et al. Visible Light Communication, Networking and Sensing: A Survey, Potential and Challenges[J]. IEEE Communications Surveys & Tutorials, 2015, 17(4):2047-2077.

[6] 王玉皞, 曹凡, 邓震宇,等. 可见光通信中LED非线性补偿和带宽拓展技术[J]. 光电工程, 2020, 47(3):190671.1-190671.12.

[7] Yin L, Popoola W O, Wu X P, et al. Performance Evaluation of Non-Orthogonal Multiple Access in Visible Light Communication[J]. IEEE Transactions on Communications, 2016, 64(12):5162-5175.

[8] Kizilirmak R C, Narmanlioglu O, Uysal M. Relay-assisted OFDM-based Visible Light Communications [J]. IEEE Transactions on Communications, 2015, 63(10):3765-3778.

[9] Feng L F, Rose Q Y, Wang J P, et al. Deployment Issues and Performance Study in a Relay-assisted Indoor Visible Light Communication system[J]. IEEE Systems Journal, 2019, 13(1):562-570.

[10] 徐勇军, 彭瑶, 余晓磊, 等. 面向5G协作通信系统的资源分配技术综述[J]. 重庆邮电大学学报(自然科学版), 2019, 31(2):5-19.

[11] Yang Y, Zeng Z M, Cheng J L, et al. A Relay-Assisted OFDM System for VLC Uplink Transmission [J]. IEEE Transactions on Communication, 2019, 67(9):6268-6281.

[12] Xiao Y, DIamantoulakis P D, Fang Z Q, et al. Hybrid Lightwave/RF Cooperative NOMA Networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(2):1154-1166.

[13] Sun Z G, Yu H Y, Zhu Y J, et al. A Superimposed Relaying Strategy and Power Allocation for Outdoor Visible Light Communications [J]. IEEE Access, 2017, 5:9555-9561.

[14] Nauryzbayev G, Abdallah M, Al-Dhahir N. Outage Analysis of Cognitive Electric Vehicular Networks over Mixed RF/VLC Channels [J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(3):1096-1107.

[15] Yang Y, Zeng Z M, Cheng J L, et al. An Amplify-and-Forward based OFDM System for VLC Uplink Transmission[C]//IEEE Global Communications Conference 2017. Singapore: IEEE, 2017, 17506706:1-6.

[16] 迟楠, 陈慧. 高速可见光通信的前沿研究进展[J]. 光电工程, 2020,47(3):190687.1-190687.12.

[17] Han Y, Zhou X T, Yang L Q, et al. A Bipartite Matching based User Pairing Scheme for Hybrid VLC-RF NOMA Systems[C]//International Conference on Computing, Networking and Communications (ICNC) 2018. Maui, HI, USA: IEEE, 2018:480-485.

[18] Alkhori J, Nauryzbayev G, Abdallah M, et al. Secrecy Performance of Decode-and-Forward based Hybrid RF/VLC Relaying Systems [J]. IEEE Access, 2019, 7:10844-10856.

[19] Papanikolaou V K, Diamantoulakis P D, Karagiannidis G K, et al. User Grouping for Hybrid VLC/RF Networks with NOMA: A Coalitional Game Approach [J]. IEEE Access, 2019, 7:103299-103309.

[20] Rakia T, Yang H C, Gebali F, et al. Optimal Design of Dual-Hop VLC/RF Communication System with Energy Harvesting[J]. IEEE Communications Letters, 2016,20(10):1979-1982.

[21] Pan G F, Ye J, Ding Z G, et al. Secure Hybrid VLC-RF Systems with Light Energy Harvesting [J]. IEEE Transactions on Communications, 2017,65(10):4348-4359.

[22] Narmanlioglu O, Kizilirmak R C, Uysal M. Relay-Assisted OFDM-based Visible Light Communications over Multipath Channels[C]//17th International Conference on Transparent Optical Networks (ICTON) 2015. Budapest, Hungary: IEEE, 2015:1-4.

[23] 王汝言, 缪懿, 闫俊杰. 一种结合威望的D2D通信中继选择算法[J]. 西安电子科技大学学报, 2018,45(1):76-82.

[24] Gheth W, Rabie K M, Adebisi B, et al. Energy-per-Bit Performance Analysis of Relay-based Visible Light Communication Systems[J]. Physical Communication, 2019, 35(AUG):100699.1-100699.8.

[25] Dissanayake S D, Armstrong J. Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD Systems [J]. Journal of Lightwave Technology, 2013, 31(7):1063-1072.

[26] 王汝言, 王卓, 吴大鹏,等. 基于训练序列与数据叠加的ACO-OFDM无线光通信系统时间同步方法[J]. 电子学报, 2012,40(1):162-166.

[27] Na Z Y, Wang Y Y, Xiong M D, et al. Modeling and Throughput Analysis of an ADO-OFDM based Relay-Assisted VLC System for 5G Networks [J]. IEEE Access, 2018, 6:17586-17594.

[28] 柯熙政, 雷妍, 张颖. Hartley变换OFDM调制的可见光通信研究[J]. 信号处理, 2019, 35(2):266-274.

[29] Zhou X T, Li S S, Zhang H X, et al. Cooperative NOMA based VLC/RF System with Simultaneous Wireless Information and Power Transfer[C]//IEEE/CIC International Conference on Communications in China (ICCC) 2018. Beijing, China: IEEE, 2018:100-105.

[30] Chen C, Zhong W D, Yang H L, et al. On the Performance of MIMO NOMA based Visible Light Communication Systems [J]. IEEE Photonics Technology Letters, 2018, 30(4):307-310.

[31] Nauryzbayev G, Abdallah M, Elgala H. Outage of SEE-OFDM VLC-NOMA Networks [J]. IEEE Photonics Technology Letters, 2019, 31(2):121-124.

[32] Arafa A, Panayirci E, Poor H V, et al. Relay-Aided Secure Broadcasting for Visible Light Communications [J]. IEEE Transactions on Communications, 2019, 67(6):4227-4239.

[33] Narmanlioglu O, Kizilirmak R C, Miramirkhani F, et al. Cooperative Visible Light Communications with Full-Duplex Relaying[J]. IEEE Photonics Journal, 2017, 9(3):1-11.

[34] Namdar M, Basgumus A, Tsiftsis T A, et al. Outage and BER Performances of Indoor Relay-Assisted Hybrid RF/VLC Systems[J]. Iet Communications, 2018, 12(17):2104-2109.

[35] Pan G F, Ye J, Zhang C, et al. Secure Cooperative Hybrid VLC-RF Systems[J]. IEEE Transactions on Wireless Communications, 2020, 19(11):7097 - 7107.

[36] Alkhori J, Nauryzbayev G, Abdallah M, et al. Secrecy Capacity of Hybrid RF/VLC DF Relaying Networks with Jamming[C]//International Conference on Computing Networking and Communications (ICNC) 2019. Honolulu, HI, USA: IEEE, 2019:67-72.

[37] Zenaidi M R, Rezki Z, Abdallah M, et al. Achievable Rate-Region of VLC/RF Communications with an Energy Harvesting Relay[C]//IEEE Global Communications Conference 2017. Singapore: IEEE, 2017,17506105:1-7.

朱蔓菁, 王玉皞, 刘晓东. 可见光通信中继技术研究[J]. 光通信研究, 2021, 47(3): 64. ZHU Man-jing, WANG Yu-hao, LIU Xiao-dong. Research on Relay Technology of Visible Light Communication[J]. Study On Optical Communications, 2021, 47(3): 64.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!