Chinese Optics Letters, 2023, 21 (12): 121401, Published Online: Dec. 11, 2023  

All-fiber laser amplification at 1948 nm based on double-cladding Tm/Al co-doped photonic crystal fiber fabricated by laser additive manufacturing

Author Affiliations
1 School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou 510665, China
2 Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
3 Guangzhou Key Laboratory for Special Fiber Photonic Devices, South China Normal University, Guangzhou 510006, China
4 Guangdong Provincial Key Laboratory of Industrial Ultrashort Pulse Laser Technology, Shenzhen 518055, China
Abstract
In this work, we demonstrated the double-cladding Tm/Al co-doped photonic crystal fiber (PCF) by laser additive manufacturing. The measurements show that the fiber was heavily doped with a Tm3+ concentration of 2.13% (mass fraction) without any crystallization. The splicing property of PCF was studied, and the integrity of the PCF air holes was maintained during the splicing process. The PCF with combiner pigtail has a splice loss of 0.23 dB. The all-fiber Tm/Al co-doped PCF amplifier system achieves a slope efficiency of 13% at 1948 nm with an output laser power of nearly 1.59 W. An upconversion process was also observed under laser excitation with a 1064 nm pulse. This method provides a new idea to deal with Tm-doped PCF fabrication and promotes the promising application of 2 µm fiber lasers.

Yongwei Shi, Nan Zhao, Jiantao Liu, Jiaming Li, Zhiyun Hou, Guiyao Zhou. All-fiber laser amplification at 1948 nm based on double-cladding Tm/Al co-doped photonic crystal fiber fabricated by laser additive manufacturing[J]. Chinese Optics Letters, 2023, 21(12): 121401.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!