硅酸盐学报, 2022, 50 (8): 2110, 网络出版: 2022-12-13  

无纺布结构柔性硅基负极原位制备及电化学性能

In-situ Preparation and Electrochemical Properties of Non-woven Flexible Silicon Anode
作者单位
1 宁夏大学机械工程学院,银川 750021
2 宁夏光伏材料重点实验室,银川 750021
摘要
针对硅材料嵌脱锂过程中体积膨胀容易导致负极材料粉化和与集流体脱落而使电池容量快速衰减、导电性差等问题,以自制的纳米硅为主要材料,采用静电纺丝的方法原位制备了具有无纺布结构的柔性硅基负极,对其物性与结构形貌和电化学性能进行了系统研究。结果表明:所制备的无纺布结构的硅基负极具有非常好的柔性,聚乙烯吡咯烷酮裂解后的碳主要以无定形碳的形式存在,Si/C复合的硅基负极纤维膜具有高的比表面积并存在大量介孔结构。在0.1 A/g充放电电流密度下,首圈放电容量可以达到2 086.7 mA·h/g,初始Coulombic效率高达81.1%,放电容量经过100圈循环后仍能维持在500 mA·h/g以上。
Abstract
Silicon anode materials pulverization and deciduation from the collector can lead to the battery capacity fast attenuation and low conductivity due to the volume expansion of silicon during the lithiation/delithiation process. We prepared a kind of non-woven flexible silicon-based anode by an in-situ electrospinning method with nanosilicon self-controlled, and investigated the morphology, structure and electrochemical performance. The results show that the prepared non-woven silicon-based anode has a superior flexibility, and carbon after polyvinyl pyrrolidone cracking mainly exists in the form of amorphous carbon. The Si/C composite silicon-based anode fiber film has a high specific surface area and a structure with massive mesopores, and the first-cycle discharge capacity can reach 2 086.7 mA·h/g at a charge-discharge current density of 0.1 A/g, the initial Coulomb efficiency is 81.1%, and the discharge capacity can still maintain > 500 mA·h/g after 100 cycles.
参考文献

[1] LI Wangwu, PENG Jiao, LI Hui, et al. Architecture and performance of Si/C microspheres assembled by nano-Si via electro-spray technology as stability-enhanced anodes for lithium-ion batteries[J]. J Alloys Compd, 2022, 903: 163940.

[2] LI Peng, KIM Hun, SUN Yang-Kook. Diverting exploration of silicon anode into practical way: A review focused on silicon-graphite composite for lithium ion batteries[J]. Energy Storage Mater, 2021, 35: 550-576.

[3] LEBLANC Dominic, HOVINGTON Pierre, ZAGHIB Karim. Silicon as anode for high-energy lithium ion batteries: From molten ingot to nanoparticles[J]. J Power Sources, 2015, 299: 529-536.

[4] 董燕茹, 孔国龙, 张渝, 等. 微米硅-石墨-碳负极的制备及在锂离子电池中的应用[J]. 微纳电子技术, 2021, 58(5): 379-385.

[5] FULKERSON W, MOORE J P, WILLIAMS R K, et al. Therrxial conductivity, electrical resistivity, and seebeck[J]. Phys Rev, 1968, 167(3): 765-782.

[6] PARK Myounggu, ZHANG Xiangchun, SASTRY Ann-Marie. A review of conduction phenomena in Li-ion batteries[J]. J Power Sources, 2010, 195(24): 7904-7929.

[7] ZUO Xiuxia, ZHU Jin, CHENG Ya-Jun. Silicon based lithium-ion battery anodes: A chronicle perspective review[J]. Nano Energy, 2017, 31: 113-143.

[8] DOMINIC Leblanc, PIERRE Hovington, CHISU Kim, et al. Silicon as anode for high-energy lithium ion batteries: From molten ingot to nanoparticles[J]. J Power Sources, 2015, 299: 529-536.

[9] GE Mingyuan, LU Yunhao, PETER Ercius, et al. Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon[J]. Nano Lett, 2014, 14: 261-268.

[10] ZHU Bin, JIN Yan, TAN Yingling, et al. Scalable production of Si nanoparticles directly from low gradesources for lithium-ion battery anode[J]. Nano Lett, 2015, 15: 5750-5754.

[11] 陈宇龙, 胡仁宗, 刘辉, 等. 等离子体辅助球磨Si-C复合负极材料及其电化学性能研究[J]. 电化学, 2014, 20(1): 51-55.

[12] 马海燕, 周倩, 杨化滨. 高能球磨法制备锂离子电池Si/Co/C负极材料[J]. 南开大学学报(自然科学版), 2014, 47(1): 87-91.

[13] 屈超群, 王玉慧, 姜涛, 等. 静电纺丝法制备Si/C复合负极材料及其性能表征[J]. 无机材料学报, 2014, 29(2): 197-202.

[14] ALIX ladam, NICOLAS Bibent, CLINE Cénac-Morthé, et al. One-pot ball-milling synthesis of a Ni-Ti-Si based composite as anodematerial for Li-ion batteries[J]. Electrochim Acta, 2017, 245: 497-504.

[15] ZHOU Xiangyang, CHEN Song, ZHOU Haochen, et al. Enhanced lithium ion battery performance of nano/micro-size Si via combination of metal-assisted chemical etching method and ball-milling[J]. Microporous Mesoporous Mater, 2018, 268: 9-15.

[16] HSIEH Cheng-che, LIN Yan-Gu, CHIANG Chao-Lung, et al. Carbon-coated porous Si/C composite anode materials via two-step etching/coating processes for lithium-ion batteries[J]. Ceram Int, 2020, 46: 26598-26607.

[17] XIAO Kuikui, TANG Qunli, LIU Zheng, et al. 3D interconnected mesoporous Si/SiO2 coated with CVD derived carbon as an advanced anode material of Li-ion batteries[J]. Ceram Int, 2018, 44: 3548-3555.

[18] STEPHEN lawes, QIAN Sun, ANDREW Lushington, et al. Inkjet-printed silicon as high performance anodes for Li-ion batteries[J]. Nano Energy, 2017, 36: 313-321.

[19] MOSER S, KENEL C, WEHNER L A, et al. 3D ink-printed, sintered porous silicon scaffolds for battery applications[J]. J Power Sources, 2021, 507: 230298.

[20] ZHANG Yin, CHENG Yangqin, SONG Jinhua, et al. Functionalization- assistant ball milling towards Si/graphene anodes in high performance Li-ion batteries[J]. Carbon, 2021, 181: 300-309.

[21] HOU Xianhua, ZHANG Miao, WANG Jiyun, et al. High yield and low-cost ball milling synthesis of nano-flake Si@SiO2 with small crystalline grains and abundant grain boundaries as a superior anode for Li-ion batteries[J]. J Alloys Compd, 2015, 639: 27-35.

[22] SHEN Xiaohui, TIAN Zhanyuan, FAN Ruijuan, et al. Research progress on silicon/carbon composite anode materials for lithium-ion battery[J]. J Energy Chem, 2018, 27: 1067-1090.

[23] BRENNAN Campbell, ROBERT Ionescu, MAXWELL Tolchin, et al. Carbon-coated, diatomite-derived nanosilicon as a high rate capable Li-ion battery anode[J]. Scient Rep, 2016(10): 1-9.

[24] HWA Yoon, KIM Won-Sik, HONG Seong-Hyeon, et al. High capacity and rate capability of core-shell structured Nano-Si/C anode for Li-ion batteries[J]. Electrochim Acta, 2012, 71: 201-205.

[25] WANG Dingsheng, GAO Mingxia, PAN Hongge, et al. High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization[J]. J Power Sources, 2014, 256: 190-199.

[26] MA Jian-zhong, LIU Yi-hong, BAO Yan, et al. Research advances in polymer emulsion based on core-shell structure particle design[J]. Adv Colloid Interface Sci, 2013, 197/198: 118-131.

[27] JEONG Rae Kim, SUNG Won Choi, SEONG Mu Jo, et al. Electrospun PVdF-based fibrous polymer electrolytes for lithiumion polymer batteries[J]. Electrochim Acta, 2004, 50: 69-75.

[28] JI Liwen, ZHANG Xiangwu. Fabrication of porous carbon/Si composite nanobers as high-capacity battery electrodes[J]. Electrochem Commun, 2009, 11: 1146-1149.

[29] CUI Li-feng, RICCARDO Ruffo, CHAN Candace K, et al. Crystalline- amorphous core?傆bshell silicon nanowires for high capacity and high current battery electrodes[J]. Nano Letter, 2009, 9(1): 491-495.

[30] JI Liwen, ZHANG Xiangwu. Electrospun carbon nanofibers containing silicon particles as an energy-storage medium[J]. Carbon, 2009, 47: 3219-3226.

[31] DING Y S, LI W N, IACONETTI S, et al. Characteristics of graphite anode modified by CVD carbon coating[J]. Surface CoatTechnol, 200(9): 3041-3048.

[32] TANG H, TU J P, LIU X Y, et al. Self-assembly of Si/honeycomb reduced graphene oxide compositefilm as a binder-free and flexible anode for Li-ion batteries[J]. J Mater Chem A, 2014, 2(16): 5834-5840.

[33] ZHOU X Y, TANG J J, YANG J, et al. Silicon@carbon hollow core-shell heterostructures novel anodematerials for lithium ion batteries[J]. Electrochim Acta, 2013(87): 663-668.

[34] YANG J P, WANG Y X, CHOU S L, et al. Yolk-shell silicon- mesoporous carbon anode with compact solidelectrolyte interphase film for superior lithium-ion batteries[J]. Nano Energy, 2015, 18: 133-142.

[35] 李兆麟. 锂离子电池氧化亚硅基负极材料的制备与电化学性能研究[D]. 北京科技大学, 2020.

[36] LEE Byoung Sun, SON Seoung-Bum, PARK Kyu-Min, et al. Fabrication of Si core/C shell nanofibers and their electrochemical performances as a lithium-ion battery anode[J]. J Power Sources, 2012, 206: 267-273.

[37] EOM J Y, PARK J W, KWON H S, et al. Electrochemical insertion of lithium into multiwalled carbon nanotube/silicon composites produced by ballmilling[J]. J Electrochem Soc, 2006, 153(9): 1678-1684.

[38] WU Junxiong, QIN Xianying, MIAO Cui, et al. Electrochemical insertion of lithium into multiwalled carbon nanotubesilicon composites produced by ballmilling[J]. Carbon, 2016, 98: 582-591.

[39] JAGJIT Nanda, MONI Kanchan Datta, REMILLARD J T, et al. In situ Raman microscopy during discharge of a high capacity silicon-carbon composite Li-ion battery negative electrode[J]. Electrochem Commun, 2009, 11: 235-237.

[40] SUN Wei, HU Renzong, ZHANG Miao, et al. Binding of carbon coated nano-silicon in graphene sheets by wet ball milling and pyrolysis as high performance anodes for lithium-ion batteries[J]. J Power Sources, 2016, 318: 113-120.

张佃平, 苏少鹏, 张猛, 李进. 无纺布结构柔性硅基负极原位制备及电化学性能[J]. 硅酸盐学报, 2022, 50(8): 2110. ZHANG Dianping, SU Shaopeng, ZHANG Meng, LI Jin. In-situ Preparation and Electrochemical Properties of Non-woven Flexible Silicon Anode[J]. Journal of the Chinese Ceramic Society, 2022, 50(8): 2110.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!