激光技术, 2023, 47 (4): 492, 网络出版: 2023-12-11  

基于霍夫变换的结构光场3维成像方法

Structured light field 3-D imaging method based on Hough transform
作者单位
1 深圳技术大学 大数据与互联网学院,深圳 518118
2 深圳技术大学 中德智能制造学院,深圳 518118
3 深圳技术大学 新材料与新能源学院,深圳 518118
摘要
为了在被测物体部分被遮挡的情况下,仍能完整地测量出物体的表面形貌,提出了一种基于霍夫变换的多线结构光标记的光场3维成像系统。通过提取亚像素的条纹中心坐标进行投票,分析霍夫参数空间中的投票分布,设计了自适应范围投票和自适应窗口策略,无需对条纹级次编码也能够准确地确定对极平面图像中多根直线的参数。结果表明,该系统拟合平面的平均偏差为0.0096 mm,标准偏差为0.0074 mm,并利用光场成像中不同视角下物体的遮挡关系不一致,准确地恢复了被遮挡物体的完整表面形貌。这一结果对于解决3维测量过程中遮挡问题是有帮助的,该研究为获取完整和高效3维数据的测量方法提供了参考。
Abstract
In order to accurately recover the complete shape of the measured object with partial occlusion, a system for light field 3-D imaging based on multi-line structured light marking was proposed and a structured light field 3-D imaging method based on the Hough transform was proposed for the image processing problem in this system. The extracted sub-pixel fringe center coordinates were used to Hough transform, then the voting distribution in the Hough parameter space was analyzed, and adaptive range voting and adaptive window strategies were designed. Consequently, the parameters of multiple straight lines in the epipolar plane image can be accurately determined by the proposed method, which does not need to encode the fringe level. The experimental results show that the mean deviation and standard deviation of the fitted plane are 0.0096 mm and 0.0074 mm respectively. The complete shape of measured object is accurately obtained, which utilities the occlusion of different sub-aperture images is inconsistent in light field imaging. The result is helpful for solving the occlusion problem in the 3-D measurement process, and this work provides a reference for the measurement method to obtain complete and efficient 3-D data.
参考文献

[1] ZHANG S. High-speed 3D shape measurement with structured light methods: A review[J]. Optics and Lasers in Engineering, 2018, 106: 119-131.

[2] JAVIDI B, CARNICER A, ARAI J, et al. Roadmap on 3D integral imaging: Sensing, processing, and display[J]. Optics Express, 2020, 28(22): 32266-32293.

[3] MARRUGO A G, GAO F, ZHANG S. State-of-the-art active optical techniques for three-dimensional surface metrology: A review[J]. Journal of the Optical Society of America, 2020, 37(9): B60-B77.

[4] LIU F, HOU G Q, SUN Zh N, et al. High quality depth map estimation of object surface from light-field images[J]. Neurocomputing, 2017, 252: 3-16.

[5] TAO M W, SRINIVASAN P P, HADAP S, et al. Shape estimation from shading, defocus, and correspondence using light-field angular coherence[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(3): 546-560.

[6] NG R. Digital light field photography[D]. San Francisco, USA: Stanford University, 2006:19-36.

[7] ZHOU W H, ZHOU E, LIU G M, et al. Unsupervised monocular depth estimation from light field image[J]. IEEE Transactions on I-mage Processing, 2019, 29: 1606-1617.

[8] CAI Z W, LIU X L, PENG X, et al. Structured light field 3D imaging[J]. Optics Express, 2016, 24(18): 20324-20334.

[9] CAI Z W, LIU X L, PENG X, et al. Ray calibration and phase mapping for structured-light-field 3D reconstruction[J]. Optics Express, 2018, 26(6): 7598-7613.

[10] LIU Sh T, LUO H F, CHEN X M, et al. Review of calibration method for structured light measurement[J]. Laser Technology, 2015, 39(2): 252-258(in Chinese).

[11] WU Q Y, HUANG H T, CHEN Sh Zh, et al. Research on 3D imaging technology of light field based on structural light marker[J]. Infrared and Laser Engineering, 2020, 49(3): 255-260(in Chin-ese).

[12] LEVOY M, HANRAHAN P. Light field rendering[C]//Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. New York,USA: Association for Computing Machinery, 1996: 31-42.

[13] BOLLES R C, BAKER H H, MARIMONT D H. Epipolar-plane i-mage analysis: An approach to determining structure from motion[J]. International Journal of Computer Vision, 1987, 1(1): 7-55.

[14] LU X T, WU Q Y, HUANG H T. Calibration based on ray-tracing for multi-line structured light projection system[J]. Optics Express, 2019, 27(24): 35884-35894.

[15] DUDA R O, HART P E. Use of the Hough transformation to detect lines and curves in pictures[J]. Communications of the ACM, 1972, 15(1): 11-15.

[16] HUANG L F, LIU G D, ZHANG Ch, et al. Laser stripe center extraction algorithm based on gray weight model[J]. Laser Technology, 2020, 44(2): 190-195(in Chinese).

[17] WU Q Y, SU X Y, LI J Zh, et al. A new method for extracting the centre-line of line structure light-stripe[J]. Journal of Sichuan University(Engineering Science Edition), 2007, 39(4): 151-155.

[18] NIBLACK W, PETKOVIC D. On improving the accuracy of the Hough transform[J]. Machine Vision and Applications, 1990, 3(2): 87-106.

[19] XU Z Zh, SHIN B S, KLETTE R. A statistical method for line segment detection[J]. Computer Vision and Image Understanding, 2015, 138: 61-73.

[20] FURUKAWA Y, SHINAGAWA Y. Accurate and robust line segment extraction by analyzing distribution around peaks in Hough space[J]. Computer Vision and Image Understanding, 2003, 92(1): 1-25.

张志俊, 吴庆阳, 邓亦锋, 蒋逸凡, 郑国梁, 翟剑庞. 基于霍夫变换的结构光场3维成像方法[J]. 激光技术, 2023, 47(4): 492. ZHANG Zhijun, WU Qingyang, DENG Yifeng, JIANG Yifan, ZHENG Guoliang, ZHAI Jianpang. Structured light field 3-D imaging method based on Hough transform[J]. Laser Technology, 2023, 47(4): 492.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!