人工晶体学报, 2023, 52 (1): 132, 网络出版: 2023-03-18  

Sr3ZnNb2O9∶0.3Eu3+, xNa+荧光粉的合成和发光性能研究

Preparation and Luminescence Performance of Sr3ZnNb2O9∶0.3Eu3+, xNa+ Phosphors
作者单位
1 贵州大学大数据与信息工程学院,贵州省电子功能复合材料特色重点实验室,贵阳 550025
2 贵州大学物理学院,贵阳 550025
摘要
本文通过高温固相反应成功制备了Sr3ZnNb2O9∶0.3Eu3+, xNa+(x=0,0.1,0.2,0.3,0.4,0.5)系列荧光粉。X射线衍射分析和精修结果表明,Eu3+和Na+成功掺杂到Sr3ZnNb2O9基质中,并部分取代了Zn2+。采用扫描电子显微镜测试了样品的微观形貌和元素分布。光谱特性和热稳定性研究表明,Na+的最佳掺杂浓度为x=0.2,Na+的引入提高了Sr3ZnNb2O9∶0.3Eu3+荧光粉的热稳定性,活化能为0.163 eV。计算出Sr3ZnNb2O9∶0.3Eu3+, 0.2Na+样品的CIE色坐标为(0.618, 0.376),相关色温和色纯度分别为1 855 K和98.46%。
Abstract
In this paper, Sr3ZnNb2O9∶0.3Eu3+, xNa+ (x=0,0.1,0.2,0.3,0.4,0.5) phosphors were successfully prepared by high temperature solid-state reaction. XRD patterns and refinement results show that Eu3+ and Na+ are successfully doped into the matrix and partially substituted Zn2+. The microscopic morphology and element distribution of the samples were confirmed by scanning electron microscopy. The spectral characteristics and thermal stability analysis show that the optimal doping concentration of Na+ is x=0.2. The introduction of Na+ improves the thermal stability of Sr3ZnNb2O9∶0.3Eu3+ phosphors and the calculated activation energy is 0.163 eV. The CIE color coordinate of the Sr3ZnNb2O9∶0.3Eu3+, 0.2Na+ samples is calculated to be (0.618, 0.376), the correlated color temperature and the color purity are 1 855 K and 98.46%, respectively.
参考文献

[1] KIM Y H, ARUNKUMAR P, KIM B Y, et al. A zero-thermal-quenching phosphor[J]. Nature Materials, 2017, 16(5): 543-550.

[2] MU Z F, HU Y H, CHEN L, et al. Synthesis of Bi3+ and Gd3+ doped ZnB2O4 for evaluation as potential materials in luminescent display applications[J]. Displays, 2014, 35(3): 147-151.

[3] CUI R R, GUO X, DENG C Y. A novel Ba3Bi2(PO4)4∶Sm3+ orange red-emitting phosphor: influences of sintering temperature and Sm3+ concentration on microstructures and photoluminescence properties[J]. Journal of Luminescence, 2020, 224: 117233.

[4] ZHANG J, CHEN M X, GAO Y L. Investigation on luminescence of Na3Ca6(PO4)5∶Eu2+ phosphor for LEDs[J]. Displays, 2017, 49: 35-39.

[5] YANG C, LIANG X J, DI X X, et al. Facile fabrication and luminescence characteristics of Ce∶YAG phosphor glass thick films coated on a glass substrate for white LEDs[J]. Ceramics International, 2016, 42(13): 14526-14532.

[6] UEDA J, DORENBOS P, BOS A J J, et al. Insight into the thermal quenching mechanism for Y3Al5O12∶Ce3+ through thermoluminescence excitation spectroscopy[J]. The Journal of Physical Chemistry C, 2015, 119(44): 25003-25008.

[7] ZHANG L, YI S P, HU X X, et al. Synthesis and photoluminescence properties of multicolor tunable GdNbO4∶Tb3+, Eu3+ phosphors based on energy transfer[J]. Modern Physics Letters B, 2017, 31(8): 1750051.

[8] XIAN J Q, YI S P, DENG Y M, et al. Synthesis and photoluminescence properties of Ln3+ (Ln3+=Tb3+, Dy3+, Sm3+, Er3+)-doped Ca2Nb2O7 phosphors[J]. Physica B: Condensed Matter, 2016, 483: 19-25.

[9] SHI S K, GAO J, ZHOU J. Effects of charge compensation on the luminescence behavior of Eu3+ activated CaWO4 phosphor[J]. Optical Materials, 2008, 30(10): 1616-1620.

[10] YUAN G F, CUI R R, ZHANG J, et al. A novel composite perovskite Ba3ZnNb2O9∶Eu3+ orange red-emitting phosphor: crystal structure, luminescence properties and high thermal stability[J]. Optik, 2021, 232: 166513.

[11] ZHANG X, CUI R R, ZHANG J, et al. A novel red-emitting phosphor Ca2GdNbO6∶Eu3+: influences of sintering temperature and Eu3+ concentration on the photoluminescence[J]. ECS Journal of Solid State Science and Technology, 2021, 10(2): 026003.

[12] SINGH R, BEDYAL A K, MANHAS M, et al. Charge compensated CaSr2(PO4)2∶Sm3+, Li+/Na+/K+ phosphor: luminescence and thermometric studies[J]. Journal of Alloys and Compounds, 2022, 901: 163793.

[13] YUAN G F, CUI R R, ZHANG J, et al. Photoluminescence evolution and high thermal stability of orange red-emitting Ba3-xSrxZnNb2O9∶Eu3+ phosphors[J]. Journal of Solid State Chemistry, 2021, 303: 122447.

[14] REN Q, ZHAO Y J, WU X L, et al. A novel white Ba3-ySryY1-x(BO3)3∶xDy3+ phosphor with lower correlated color temperature and superior thermal stability[J]. Journal of Solid State Chemistry, 2020, 292: 121744.

[15] DU P, WANG L L, YU J S. Luminescence properties and energy transfer behavior of single-component NaY(WO4)2∶Tm3+/Dy3+/Eu3+ phosphors for ultraviolet-excited white light-emitting diodes[J]. Journal of Alloys and Compounds, 2016, 673: 426-432.

[16] DUAN H, CUI R R, LI J H, et al. Synthesis and photoluminescence properties of a novel red emitting Ba3ZnTa2O9∶Eu3+ phosphor[J]. Journal of Molecular Structure, 2021, 1224: 129075.

[17] STRUCK C W, FONGER W H. Role of the charge-transfer states in feeding and thermally emptying the 5D states of Eu+3 in yttrium and lanthanum oxysulfides[J]. Journal of Luminescence, 1970, 1/2: 456-469.

[18] JIAO Y H, WU X L, REN Q, et al. Photoluminescence and energy transfer of a color tunable phosphors: Sr3La(BO3)3∶Ln3+ (Ln=Dy, Eu, Tb) for warm white light UV-excited WLEDs[J]. Optics & Laser Technology, 2019, 109: 470-479.

[19] EKMEKI M K, LHAN M, GLERYZ L F, et al. Study on molten salt synthesis, microstructural determination and white light emitting properties of CoNb2O6∶Dy3+ phosphor[J]. Optik, 2017, 128: 26-33.

[20] SURESH KUMAR J, PAVANI K, MOHAN BABU A, et al. Fluorescence characteristics of Dy3+ ions in calcium fluoroborate glasses[J]. Journal of Luminescence, 2010, 130(10): 1916-1923.

崔瑞瑞, 赵荣力, 袁高峰, 凌易, 邓朝勇, 龚新勇. Sr3ZnNb2O9∶0.3Eu3+, xNa+荧光粉的合成和发光性能研究[J]. 人工晶体学报, 2023, 52(1): 132. CUI Ruirui, ZHAO Rongli, YUAN Gaofeng, LING Yi, DENG Chaoyong, GONG Xinyong. Preparation and Luminescence Performance of Sr3ZnNb2O9∶0.3Eu3+, xNa+ Phosphors[J]. Journal of Synthetic Crystals, 2023, 52(1): 132.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!