量子光学学报, 2021, 27 (1): 62, 网络出版: 2021-09-13  

基于33Σ+1共振耦合态制备超冷基态85Rb133Cs分子的实验研究

Experimental Investigations on Preparation of Ultracold 85Rb133Cs Molecules in the Ground State Based on Resonant Coupling 33Σ+1 state
作者单位
1 山西大学激光光谱研究所量子光学与光量子器件国家重点实验室, 太原 030006
2 山西大学极端光学协同创新中心, 太原 030006
摘要
本文33Σ+1以为中间激发态, 通过扫描光缔合光的频率得到了33Σ+1的不同振动态光谱。研究发现利用短程光缔合制备的超冷基态85Rb133mCs分子产率在33Σ+1(v=3)处较其他振动态更大, 33Σ+1(v=3)转动常数较邻近的振动态有明显变化且与23Π0-(v=14)的能量接近, 这些特征显示了这两个振动态的共振耦合特性。优化光缔合光的功率和光电离光的能量后, 我们得到X1Σ+(v=0)最低振动态超冷85Rb133Cs分子的产率为1.5×104/s。在考虑了分子波函数的宇称和跃迁选择定则后, 我们发现33Σ+1(v=3,J=1)存在单步自发辐射制备超冷基态85Rb133Cs分子的通道, 采用该通道可实现原子-分子相干转移直接制备超冷基态分子。
Abstract
In this paper, we choose 33Σ+1 as an intermediate state and obtain relevant vibrational spectra by scanning the frequency of PA laser. It is found that the production rate of ultracold 85Rb133Cs molecules in the lowest vibrational state, formed by short-range PA, is larger in 33Σ+1(v=3) than other vibrational states, the corresponding rotational constant in 33Σ+1(v=3) is abrupt and the energy is close to 23Π0-(v=14) state. All of these display the characteristic of resonant coupling between these two states. After the optimization of PA laser intensity and photoionization power, the production rate of 85Rb133Cs molecules in X1Σ+(v=0) is measured to be around 1.5×104/s. With the consideration of the parity of the molecular wave function and the selection rules,we find that 33Σ+1(v=3,J=1) intermediate state has the passway that can spontaneously decay to ground state of ultracold 85Rb133Cs molecules via single pass which is meaningful to explore on direct transfer from atom to molecule using stimulated Raman adiabatic passage.
参考文献

[1] DeMille D. Quantum Computation with Trapped Polar Molecules[J]. Physical Review Letters, 2002, 88(6):067901. DOI: 10.1103/PhysRevLett.88.067901.

[2] Krems R V. Molecules near absolute zero and external field control of atomic and molecular dynamics[J]. International Reviews in Physical Chemistry, 2005, 24:99-118. DOI: 10.1080/01442350500167161.

[3] Hudson E R, Ticknor C, Sawyer B C, et al. Production of cold formaldehyde molecules for study and control of chemical reaction dynamics with hydroxyl radicals[J]. Physical Review A, 2006, 73(6):063404. DOI:10.1103/PhysRevA.73.063404.

[4] DeMille D, Cahn S B, Murphree D, et al. Using Molecules to Measure Nuclear Spin-Dependent Parity Violation[J]. Physical Review Letters, 2008,100(2):023003. DOI: 10.1103/PhysRevLett.100.023003.

[5] Hudson E R, Lewandowski H J, Sawyer B C, et al. Cold Molecule Spectroscopy for Constraining the Evolution of the Fine Structure Constant[J]. Physical Review Letters, 2006, 96(14):143004. DOI: 10.1103/PhysRevLett.96.143004.

[6] Aymar M, Dulieu O. Calculation of accurate permanent dipole moments of the lowest 1,3Σ+ states of heteronuclear alkali dimers using extended basis sets[J]. The Journal of Chemical Physics, 2005, 122:204302. DOI: 10.1063/1.1903944.

[7] Truppe S, Williams H J, Hambach M, et al. Molecules cooled below the Doppler limit[J]. Nature Physics, 2017, 13:1173-1176. DOI: 10.1038/nphys4241.

[8] Lim J, Almond J R, Trigatzis M A, et al. Laser Cooled YbF Molecules for Measuring the Electron’s Electric Dipole Moment[J]. Physical Review Letters, 2018, 120(12):123201. DOI: 10.1103/PhysRevLett.120.123201.

[9] Anderegg L, Augenbraun B L, Bao Y C, et al. Laser cooling of optically trapped molecules[J]. Nature Physics, 2018, 14:890-893. DOI: 10.1038/s41567-018-0191-z.

[10] Kohler T, Goral K, Julienne P S. Production of cold molecules via magnetically tunable Feshbach resonances [J]. Reviews of Modern Physics, 2006, 78(4):1311. DOI: 10.1103/RevModPhys.78.1311.

[11] Vitanov N V, Rangelov A A, Shore B W. Bergmann K Stimulated Raman adiabatic passage in physics, chemistry, and beyond[J]. Reviews of Modern Physics, 2017, 89(1):015006. DOI: 10.1103/RevModPhys.89.015006.

[12] De Marco L, Valtolina G, Matsuda K, et al. A degenerate Fermi gas of polar molecules [J]. Science, 2019, 363: 853-856. DOI: 10.1126/science.aau7230.

[13] Takekoshi T, Reichsollner L, Schindewolf A,et al. Ultracold Dense Samples of Dipolar RbCs Molecules in the Rovibrational and Hyperfine Ground State[J]. Physical Review Letters, 2014, 113(20):205301. DOI: 10.1103/PhysRevLett.113.205301.

[14] Molony P K, Gregory P D, Ji Z H, et al. Creation of Ultracold 87Rb133Cs Molecules in the Rovibrational Ground State[J]. Physical Review Letters, 2014, 113(25):255301. DOI: 10.1103/PhysRevLett.113.255301.

[15] Park J W, Will S A, Zwierlein M W. Ultracold Dipolar Gas of Fermionic 23Na40K Molecules in Their Absolute Ground State[J]. Physical Review Letters, 2015, 114(20):205302. DOI: 10.1103/PhysRevLett.114.205302.

[16] Guo M Y, Zhu B, Lu B,et al. Creation of an Ultracold Gas of Ground-State Dipolar 23Na87Rb Molecules[J]. Physical Review Letters, 2016, 116(20):205303. DOI: 10.1103/PhysRevLett.116.205303.

[17] Rvachov T M, Son H, Sommer A T, et al. Ultracold Molecules with Electric and Magnetic Dipole Moments[J]. Physical Review Letters, 2017, 119(14):143001. DOI: 10.1103/PhysRevLett.119.143001.

[18] Voges K K, Gersema P, zum Alten Borgloh M M, et al. Ultracold Gas of Bosonic 23Na39K Ground-State Molecules[J]. Physical Review Letters, 2020, 125(8):083401. DOI: 10.1103/PhysRevLett.125.083401.

[19] Jones K M, Tiesinga E, Lett P D, et al. Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering[J]. Reviews of Modern Physics, 2006, 78(2):483-535. DOI: 10.1103/RevModPhys.78.483.

[20] Deiglmayr J, Grochola A, Repp M, et al. Formation of Ultracold Polar Molecules in the Rovibrational Ground State[J]. Physical Review Letters, 2008, 101(13):133004. DOI: 10.1103/PhysRevLett.101.133004.

[21] Zabawa P, Wakim A, Haruza M, et al. Formation of ultracold X1Σ+ (v″=0) NaCs molecules via coupled photoassociation channels[J]. Physical Review A, 2011, 84(6):061401. DOI: 10.1103/PhysRevA.84.061401.

[22] Banerjee J, Rahmlow D, Carollo R, et al. Direct photoassociative formation of ultracold KRb molecules in the lowest vibrational levels of the electronic ground state[J]. Physical Review A, 2012, 86(5):053428. DOI: 10.1103/PhysRevA.86.053428.

[23] Shimasaki T, Bellos M, Bruzewicz C D, et al. Production of rovibronic-ground-state RbCs molecules via two-photon-cascade decay[J]. Physical Review A, 2015, 91(2):021401. DOI: 10.1103/PhysRevA.91.021401.

[24] Ji Z H, Zhang H S, Wu J Z, et al. Photoassociative formation of ultracold RbCs molecules in the (2)3Π state[J]. Physical Review A, 2012, 85(1):013401. DOI: 10.1103/PhysRevA.85.013401.

[25] Georgescu I M, Ashhab S, Nori F. Quantum simulation[J]. Reviews of Modern Physics, 2014, 86(1):153-185. DOI: 10.1103/RevModPhys.86.153.

[26] McCarron D J, Cho H W, Jenkin D L, et al. Dual-species Bose-Einstein condensate of 87Rb and 133Cs[J].Physical Review A, 2011, 84(1):011603. DOI: 10.1103/PhysRevA.84.011603.

[27] Bruzewicz C D, Gustavsson M, Shimasaki T, et al. Continuous formation of vibronic ground state RbCs molecules via photoassociation[J]. New Journal of Physics, 2014, 16:023018. DOI: 10.1088/1367-2630/16/2/023018.

[28] Bouloufa-Maafa N, Aymar M, Dulieu O, et al. Formation of ultracold RbCs molecules by photoassociation[J]. Laser Physics, 2012, 22:1502-1512. DOI: 10.1134/S1054660X12100039.

[29] Fioretti A, Gabbanini C. Experimental study of the formation of ultracold RbCs molecules by short-range photoassociation[J]. Physical Review A, 2013, 87(5):054701. DOI: 10.1103/PhysRevA.87.054701.

[30] Shimasaki T, Kim J T, Zhu Y Q, et al. Continuous production of rovibronic-ground-state RbCs molecules via short-range photoassociation to the b3Π1-c3Σ+1-B1Π1 states[J]. Physical Review A, 2018,98(4):043423. DOI: 10.1103/PhysRevA.98.043423.

[31] Lee Y, Yoon Y, Lee S, et al. Parallel and Coupled Perpendicular Transitions of RbCs 640 nm System: Mass-Resolved Resonance Enhanced Two-Photon Ionization in a Cold Molecular Beam[J]. The Journal of Physical Chemistry A, 2008, tbf112:7214-7221. DOI: 10.1021/jp803360w.

[32] Stevenson I C, Blasing D B, Chen Y P,et al. Production of ultracold ground-state LiRb molecules by photoassociation through a resonantly coupled state[J]. Physical Review A, 2016, 94(6):062510. DOI: 10.1103/PhysRevA.94.062510.

[33] Lysebo M, Veseth L. Cold collisions between atoms and diatomic molecules [J]. Physical Review A, 2008 77 (3):032721. DOI: 10.1103/PhysRevA.77.032721.

[34] Zhao Y T, Yuan J P, Ji Z H, et al. Experimental study of the (4)0- short-range electronic state of the 85Rb133Cs molecule by high resolution photoassociation spectroscopy[J]. Journal of Quantitative Spectroscopy andRadiative Transfer, 2016, 184:8-13. DOI: 10.1016/j.jqsrt.2016.06.025.

[35] Bohn J L, Julienne P S. Semianalytic theory of laser-assisted resonant cold collisions[J]. Physical Review A, 1999, 60 (1):414-425. DOI: 10.1103/PhysRevA.60.414.

[36] Rambo P, Schwarz J, Diels J-C. High-voltage electrical discharges induced by an ultrashort-pulse UV laser system[J]. Journal of Optics A, 200, 13:146-158. DOI: 10.1088/1464-4258/3/2/309.

[37] Zhang H S, Ji Z H, Yuan J P, et al. Cold cesium molecules produced directly in a magneto-optical trap[J]. Chinese Physics B, 2011, 20:123702. DOI: 10.1088/1674-1056/20/12/123702.

[38] Ji Z H, Li Z H, Gong T, et al. Rotational Population Measurement of Ultracold 85Rb133Cs Molecules in the Lowest Vibrational Ground State[J]. Chinese Physics Letters, 2017, 34:103301. DOI: 10.1088/0256-307X/34/10/103301.

[39] 徐克尊. 高等原子分子物理学[M]. 安徽: 中国科学技术大学出版社, 2012:250-251. Xu K Z Higher atomic and molecular physics[M]. Anhui: University of Science and Technology of China Press, 2012:250-251.

宫廷, 姬中华, 李中豪, 杜佳琪, 赵延霆, 肖连团, 贾锁堂. 基于33Σ+1共振耦合态制备超冷基态85Rb133Cs分子的实验研究[J]. 量子光学学报, 2021, 27(1): 62. 宫廷, 姬中华, 李中豪, 杜佳琪, 赵延霆, 肖连团, 贾锁堂. Experimental Investigations on Preparation of Ultracold 85Rb133Cs Molecules in the Ground State Based on Resonant Coupling 33Σ+1 state[J]. Acta Sinica Quantum Optica, 2021, 27(1): 62.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!