光通信技术, 2023, 47 (1): 25, 网络出版: 2023-03-30  

可见光无线传能通信一体化芯片

Visible light wireless energy transmission communication integrated chip
作者单位
南京邮电大学 通信与信息工程学院, 南京 210003
摘要
为了解决水下环境中物联网感知终端的能源供给难题, 利用氮化镓量子阱二极管的多功能光电特性, 采用兼容的制造工艺, 在同一块氮化镓芯片上集成能源、照明、通信和感知等器件, 在器件之间实现互联, 制备出氮化镓能源通信感知一体化芯片, 并对该芯片进行了可见光无线传能和通信实验。实验结果表明: 该芯片能够吸收外界的光脉冲信号并产生稳定的信号输出, 且信号发射速率能够达到1 Mb/s, 具有中继通信的潜力; 在水下环境中该芯片也能实现能源的采集与信号通信。
Abstract
In order to solve the energy supply problem of the perception terminal of the internet of things in underwater environment, the multifunctional photoelectric characteristics of gallium nitride quantum well diode and compatible manufacturing process are utilized to integrate energy, lighting, communication and perception components on the same gallium nitride chip, and realize interconnection among the devices, so as to prepare gallium nitride energy communication and perception integrated chip. Experiments of visible light wireless energy transmission and communication are carried out on the chip. The experimental results show that the chip can absorb external optical pulse signal and generate stable signal output, and the signal transmission rate can reach 1 Mb/s, which has the potential of relay communication. The chip can also realize energy acquisition and signal communication in underwater environment.
参考文献

[1] 卢宁宁, 张海鹏, 杨悦, 等. 近零功耗物联网及其关键技术研究[J]. 无线电通信技术, 2019, 45(4): 343-350.

[2] MOHSAN S, MAZINANI A, OTHMAN N, et al. Towards the internet of underwater things: a comprehensive survey[J]. Earth Science Informatics, 2022, 15(2): 735-764.

[3] 周洋, 张松, 吴明, 等. 水下物联网研究[J]. 舰船电子工程, 2017, 37(1): 8-13, 51.

[4] GUPTA A, SHARMA N, JAIN M, et al. Multihop underwater optical wireless communication system for internet of underwater things applications[J]. International Journal of Communication Systems, 2021, 35(3): e5041.1-e5041.11.

[5] ZENG Z Q, FU S, ZHANG H H, et al. A survey of underwater optical wireless communications[J]. IEEE Communications Surveys & Tutorials, 2017, 19(1): 204-238.

[6] 刘杨, 李崔灿, 彭木根. 低功耗水下物联网: 愿景与关键技术[J]. 物联网学报, 2022, 6(2): 1-9.

[7] JAHANBAKHT M, XIANG W, HANZO L, et al. Internet of underwater things and big marine data analytics-a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 904-956.

[8] WU F Y, SONG Y C, YANG K. An effective framework for underwater acoustic data acquisition[J]. Applied Acoustics, 2021, 182(11): 108235.1-108235.9.

[9] MISHACHANDAR B, VAIRAMUTHU S. An underwater cognitive acoustic network strategy for efficient spectrum utilization[J]. Applied Acoustics, 2021, 175(8): 107861.1-107861.9.

[10] 赵晓燕. 水下可见光通信关键技术研究[J]. 电子技术与软件工程, 2021(4): 15-16.

[11] 王永进, 傅康, 王林宁. 一种基于可见光通信技术的光互联方案[J]. 南京邮电大学学报(自然科学版), 2020, 40(5): 134-140.

[12] LIOU E C, KAO C C, CHANG C H, et al. Internet of underwater things: challenges and routing protocols[C]//IEEE. Proceedings of 2018 IEEE International Conference on Applied System Invention. Piscataway: IEEE Press, 2018: 1171-1174.

[13] VAN H N, HOANG D T, LU X, et al. Ambient backscatter communications: a contemporary survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2889-2922.

[14] WANG H, WANG S L, ZHANG E Y, et al. An energy balanced and lifetime extended routing protocol for underwater sensor networks[J]. Sensors(Basel, Switzerland), 2018, 18(5): 1596-1596.

[15] 高绪敏. 面向可见光通信的硅基氮化物同质光电子集成芯片研究[D]. 南京: 南京邮电大学, 2018.

[16] 唐先胜. 多量子阱结构中光生载流子输运性质的研究[D]. 北京: 中国科学院大学(中国科学院物理研究所), 2021.

[17] LIU C, MELANSON B, ZHANG J. AlGaN-Delta-GaN quantum well for DUV LEDs[J]. Photonics, 2020, 7(4): 87-87.

[18] 胡泽锋, 傅康, 王浩, 等. 基于氮化镓集成光电子芯片的单通道全双工可见光通信系统[J]. 光通信技术, 2023, 47(1): 40-45.

[19] GAO X M, LIU P Z, YIN Q X, et al. Wireless light energy harvesting and communication in a waterproof GaN optoelectronic system[J]. Communications Engineering, 2022, 1(1): 1-7.

[20] HAO H H, LIU P, SU P, et al. Sea-trial research on natural product-based antifouling paint applied to different underwater sensor housing materials[J]. International Biodeterioration & Biodegradation, 2022, 170: 105400-105400.

[21] 陈礼昕, 彭光强, 何竞松, 等. 全光纤电流互感器系统光纤器件的双折射误差分析[J]. 光通信技术, 2022, 46(3): 33-37.

[22] NATARAJAN V P, THANDAPANI K. An improvement of communication stability on underwater sensor network using balanced energy efficient joining distance matrix[J]. International Journal of System Assurance Engineering and Management, 2022, 13(1): 690-698.

王浩, 高绪敏, 胡泽锋, 张晨辰, 王永进. 可见光无线传能通信一体化芯片[J]. 光通信技术, 2023, 47(1): 25. WANG Hao, GAO Xuming, HU Zefeng, ZHANG Chenchen, WANG Yongjin. Visible light wireless energy transmission communication integrated chip[J]. Optical Communication Technology, 2023, 47(1): 25.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!