Frontiers of Optoelectronics, 2018, 11 (1): 0153, 网络出版: 2018-08-04  

Silicon waveguide cantilever displacement sensor for potential application for on-chip high speed AFM

Silicon waveguide cantilever displacement sensor for potential application for on-chip high speed AFM
作者单位
School of Electrical Engineering and Telecommunications, University of New South Wales, Kensington, NSW 2052, Australia
摘要
Abstract
This paper reviews an initial achievement of our group toward the development of on-chip parallel high-speed atomic force microscopy (HS-AFM). A novel AFM approach based on silicon waveguide cantilever displacement sensor is proposed. The displacement sensing approach uniquely allows the use of nano-scale wide cantilever that has a high resonance frequency and low spring constant desired for on-chip parallel HS-AFM. The approach consists of low loss silicon waveguide with nano-gap, highly efficient misalignment tolerant coupler, novel high aspect ratio (HAR) sharp nano-tips that can be integrated with nano-scale wide cantilevers and electrostatically driven nano-cantilever actuators. The simulation results show that the displacement sensor with optical power responsivity of 0.31%/nm and AFM cantilever with resonance frequency of 5.4 MHz and spring constant of 0.21 N/m are achievable with the proposed approach. The developed silicon waveguide fabrication method enables silicon waveguide with 6 and 7.5 dB/cm transmission loss for TE and TM modes, respectively, and formation of 13 nm wide nano-gaps between silicon waveguides. The coupler demonstrates misalignment tolerance of ±1.8 μm for 5 μm spot size lensed fiber and coupling loss of 2.12 dB/facet for standard cleaved single mode fiber without compromising other performance. The nano-tips with apex radius as small as 2.5 nm and aspect ratio of more than 50 has been enabled by the development of novel HAR nanotip fabrication technique. Integration of the HAR tips onto an array of 460 nm wide cantilever beam has also been demonstrated.
参考文献

[1] Binnig G, Quate C F, Gerber C. Atomic force microscope. Physical Review Letters, 1986, 56(9): 930–933

[2] Shibata M, Yamashita H, Uchihashi T, Kandori H, Ando T. Highspeed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin. Nature Nanotechnology, 2010, 5(3): 208–212

[3] Somnath S, Kim H J, Hu H, King W P. Parallel nanoimaging and nanolithography using a heated microcantilever array. Nanotechnology, 2014, 25(1): 014001

[4] Pantazi A, Sebastian A, Antonakopoulos TA, B?chtold P, Bonaccio A R, Bonan J, Cherubini G, Despont M, DiPietro R A, Drechsler U, Dürig U, Gotsmann B, H?berle W, Hagleitner C, Hedrick J L, Jubin D, Knoll A, Lantz M A, Pentarakis J, Pozidis H, Pratt R C, Rothuizen H, Stutz R, Varsamou M, Wiesmann D, Eleftheriou E. Probe-based ultrahigh-density storage technology. IBM Journal of Research and Development, 2008, 52(4.5): 493–511

[5] Ando T, Kodera N, Takai E, Maruyama D, Saito K, Toda A. A highspeed atomic force microscope for studying biological macromolecules. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(22): 12468–12472

[6] Fukuda S, Uchihashi T, Iino R, Okazaki Y, Yoshida M, Igarashi K, Ando T. High-speed atomic force microscope combined with single-molecule fluorescence microscope. Review of Scientific Instruments, 2013, 84(7): 073706

[7] Cardenas J, Poitras C B, Robinson J T, Preston K, Chen L, Lipson M. Low loss etchless silicon photonic waveguides. Optics Express, 2009, 17(6): 4752–4757

[8] Minne S C, Yaralioglu G, Manalis S R, Adams J D, Zesch J, Atalar A, Quate C F. Automated parallel high-speed atomic force microscopy. Applied Physics Letters, 1998, 72(18): 2340–2342

[9] Dukic M, Adams J D, Fantner G E. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging. Scientific Reports, 2015, 5(1): 16393

[10] Giessibl J F. High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Applied Physics Letters, 1998, 73(26): 3956–3958

[11] G?ddenhenrich T, Lemke H, Hartmann U, Heiden C. Force microscope with capacitive displacement detection. Journal of Vacuum Science & Technology A, Vacuum, Surfaces, and Films, 1990, 8(1): 383–387

[12] von Schmidsfeld A, N?renberg T, Temmen M, Reichling M. Understanding interferometry for micro-cantilever displacement detection. Beilstein Journal of Nanotechnology, 2016, 7: 841–851

[13] Cardenas J, Poitras C B, Robinson J T, Preston K, Chen L, Lipson M. Low loss etchless silicon photonic waveguides. Optics Express, 2009, 17(6): 4752–4757

[14] Lee D H, Choo S J, Jung U, Lee KW, Kim KW, Park J H. Low-loss silicon waveguide with sidewall roughness reduction using a SiO2 hard mask and fluorine-based dry etching. Journal of Micromechanics and Microengineering, 2015, 25(1): 015003

[15] Dong P, Qian W, Liao S, Liang H, Kung C C, Feng N N, Shafiiha R, Fong J, Feng D, Krishnamoorthy A V, Asghari M. Low loss shallow-ridge silicon waveguides. Optics Express, 2010, 18(14): 14474–14479

[16] Debnath K, Arimoto H, Husain M, Prasmusinto A, Al-Attili A, Petra R, Chong H, Reed G, Saito S. Low-loss silicon waveguides and grating couplers fabricated using anisotropic wet etching technique. Frontiers in Materials, 2016, 3, doi:10.3389/famts.2016.00010

[17] Pafchek R, Tummidi R, Li J,WebsterMA, Chen E, Koch T L. Lowloss silicon-on-insulator shallow-ridge TE and TM waveguides formed using thermal oxidation. Applied Optics, 2009, 48(5): 958– 963

[18] Lee K K, Lim D R, Kimerling L C, Shin J, Cerrina F. Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction. Optics Letters, 2001, 26(23): 1888–1890

[19] Wang P, Michael A, Kwok C Y. Fabrication of sub-micro waveguides with vertical sidewall and reduced roughness for low loss applications. Procedia Engineering, 2014, 87: 979–982

[20] Taillaert D, Van Laere F, Ayre M, Bogaerts W, Van Thourhout D, Bienstman P, Baets R. Grating couplers for coupling between optical fibers and nanophotonic waveguides. Japanese Journal of Applied Physics, 2006, 45(8A): 6071–6077

[21] Tang Y, Wang Z, Wosinski L, Westergren U, He S. Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits. Optics Letters, 2010, 35(8): 1290–1292

[22] Cardenas J, Poitras C B, Luke K, Luo L W, Morton P A, Lipson M. High coupling efficiency etched facet tapers in silicon waveguides. IEEE Photonics Technology Letters, 2014, 26(23): 2380–2382

[23] Dewanjee A, Caspers J N, Aitchison J S, Mojahedi M. Demonstration of a compact bilayer inverse taper coupler for Si-photonics with enhanced polarization insensitivity. Optics Express, 2016, 24(25): 28194–28203

[24] Fang Q, Liow T Y, Song J F, Tan C W, Yu M B, Lo G Q, Kwong D L. Suspended optical fiber-to-waveguide mode size converter for silicon photonics. Optics Express, 2010, 18(8): 7763–7769

[25] Chen L, Doerr C R, Chen Y K, Liow T Y. Low-loss and broadband cantilever couplers between standard cleaved fibers and high-indexcontrast Si3N4 or Si waveguides. IEEE Photonics Technology Letters, 2010, 22(23): 1744–1746

[26] Wang P, Michael A, Kwok C Y. Cantilever inverse taper coupler with SiO2 gap for submicron silicon waveguides. IEEE Photonics Technology Letters, 2017, 29(16): 1407–1410

[27] Koelmans W W, Peters T, Berenschot E, de Boer M J, Siekman M H, Abelmann L. Cantilever arrays with self-aligned nanotips of uniform height. Nanotechnology, 2012, 23(13): 135301

[28] Vermeer R, Berenschot E, Sarajlic E, Tas N, Jansen H. Fabrication of novel AFM probe with high-aspect-ratio ultra-sharp three-face silicon nitride tips. In: Proceedings of 14th IEEE International Conference on Nanotechnology, 2014, 229–233

[29] Li J D, Xie J, Xue W, Wu D M. Fabrication of cantilever with selfsharpening nano-silicon-tip for AFM applications. Microsystem Technologies, 2013, 19(2): 285–290

[30] Miyazawa K, Izumi H, Watanabe-Nakayama T, Asakawa H, Fukuma T. Fabrication of electron beam deposited tip for atomicscale atomic force microscopy in liquid. Nanotechnology, 2015, 26 (10): 105707

[31] Beard J D, Gordeev S N. Fabrication and buckling dynamics of nanoneedle AFM probes. Nanotechnology, 2011, 22(17): 175303

[32] Engstrom D S, Savu V, Zhu X, Bu I Y, Milne W I, Brugger J, Boggild P. High throughput nanofabrication of silicon nanowire and carbon nanotube tips on AFM probes by stencil-deposited catalysts. Nano Letters, 2011, 11(4): 1568–1574

[33] Edgeworth J P, Burt D P, Dobson P S,Weaver J MR, Macpherson J V. Growth and morphology control of carbon nanotubes at the apexes of pyramidal silicon tips. Nanotechnology, 2010, 21(10): 105605

[34] Spindt C A. A thin film field emission cathode. Journal of Applied Physics, 1968, 39(7): 3504–3505

[35] Itoh S, Watanabe T, Ohtsu K, Taniguchi M, Uzawa S, Nishimura N. Experimental study of field emission properties of the Spindt‐type field emitter. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena, 1995, 13(2): 487–490

[36] Spindt C A, Holland C E, Schwoebel P R, Brodie I. Field emitter array development for microwave applications. II. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena, 1998, 16(2): 758–761

[37] Wang P, Michael A, Kwok C Y.High aspect ratio sharp nanotip for nanocantilever integration at CMOS compatible temperature. Nanotechnology, 2017, 28(32): 32T01

[38] Minne S C, Adams J D, Yaralioglu G, Manalis S R, Atalar A, Quate C F. Centimeter scale atomic force microscope imaging and lithography. Applied Physics Letters, 1998, 73(12): 1742–1744

[39] Dukic M, Adams J D, Fantner G E. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging. Scientific Reports, 2015, 5(1): 16393

[40] Li M, Pernice W H P, Tang H X. Broadband all-photonic transduction of nanocantilevers. Nature Nanotechnology, 2009, 4 (6): 377–382

[41] Shoaib M, Hisham N, Basheer N, Tariq M. Frequency and displacement analysis of electrostatic cantilever based MEMS sensor. Analog Integrated Circuits & Signal Processing, 2016, 88 (1): 1–11

, , . Silicon waveguide cantilever displacement sensor for potential application for on-chip high speed AFM[J]. Frontiers of Optoelectronics, 2018, 11(1): 0153. Peng WANG, Aron MICHAEL, Chee Yee. Silicon waveguide cantilever displacement sensor for potential application for on-chip high speed AFM[J]. Frontiers of Optoelectronics, 2018, 11(1): 0153.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!