微电子学, 2021, 51 (1): 116, 网络出版: 2022-03-11  

一种隐埋缓冲掺杂层高压SBD器件新结构

A New High Voltage SBD with Improved Buried Buffer Doped Structure
作者单位
重庆大学 电气工程学院 输配电装备及系统安全与新技术国家重点实验室, 重庆 400044
摘要
提出了一种新型隐埋缓冲掺杂层(IBBD)高压SBD器件, 对其工作特性进行了理论分析和模拟仿真验证。与常规高压SBD相比, 该IBBD-SBD在衬底上方引入隐埋缓冲掺杂层, 将反向击穿点从常规结构的PN结保护环区域转移到肖特基势垒区域, 提升了反向静电释放(ESD)能力和抗反向浪涌能力, 提高了器件的可靠性。与现有表面缓冲掺杂层(ISBD)高压SBD相比, 该IBBD-SBD重新优化了漂移区的纵向电场分布形状, 在保持反向击穿点发生在肖特基势垒区域的前提下, 进一步降低反向漏电流、减小正向导通压降, 从而降低了器件功耗。仿真结果表明, 新器件的击穿电压为118 V。反向偏置电压为60 V时, 与ISBD-SBD相比, 该IBBD-SBD的漏电流降低了52.2%, 正向导通电压更低。
Abstract
A novel buried buffer doped layer (IBBD) high voltage SBD was presented, and its operating characteristics were analyzed theoretically and verified by simulation. Compared with the conventional high-voltage SBD, the IBBD-SBD introduced a buried buffer doping layer above the substrate to transfer the reverse breakdown point from the PN junction protection ring area of the conventional structure to the Schottky barrier area, which improved the reverse electrostatic discharge (ESD) ability and anti-reverse surge ability, and improved the reliability of the device. Compared with the existing surface buffer doped layer (ISBD) high-voltage SBD, IBBD-SBD reoptimized the longitudinal electric field distribution in the drift zone, and further reduced the reverse leakage current and the forward guide pass pressure drop while keeping the reverse breakdown point occurring in the Schottky barrier area, thus reduced the device power consumption. Simulation results showed that the breakdown voltage of the new device was 118 V. When the reverse bias voltage was 60 V, compared with ISBD-SBD, the leakage current of the IBBD-SBD was reduced by 52.2%, and the forward voltage drop was lower.
参考文献

[1] SLASSI A, SOROKIN P B, PERSHIN A. ohmic/ Schottky barrier engineering in metal/SnP3 hetero structures [J]. J Alloy & Compound, 2020, 831: 154800.

[2] CHEN W S, LIAO R J, ZENG Z, et al. Analyses and experiments of the Schottky contact super barrier rectifier (SSBR) [J]. IEEE Elec Dev Lett, 2020, 38(2): 902-905.

[3] CHEN W S, ZHANG P J, ZHONG Y, et al. A novel low VF super barrier rectifier (SBR) with an N-enhancement layer [J]. IEEE Elec Dev Lett, 2017, 38(2): 244-247.

[4] CHIU H C, CHI J F, KAO H L et al. The ESD protection characteristic and low-frequency noise analysis of GaN Schottky barrier diode with fluorine-based plasma treatment [J]. Micoroelec Reliab, 2016, 59: 44-48.

[5] 施敏. 半导体器件物理 [M]. 第二版. 黄振岗, 译. 北京: 电子工业出版社, 1987.

[6] 王莹. 车载肖特基二极管耐压可提升到200 V, 有望替代快恢复整流二极管 [J]. 电子产品世界, 2019, 26(10): 42-43.

[7] 李琰, 肖知明, 余航, 等. 基于肖特基势垒二极管整流的功率指示计设计 [J]. 微电子学, 2015, 45(4): 484-487.

[8] 刘宝宏, 陈瑛, 樊棠怀. 射频/微波能量收集系统的整流电路研究进展 [J].半导体技术, 2019, 44(3): 161-170.

[9] 钟怡, 许国磊, 欧宏旗, 等. 一种提高ESD性能的高压SBD器件结构 [J]. 微电子学, 2012, 42(2): 273-276.

高闻浩, 孙启明, 冉晴月, 简鹏, 陈文锁. 一种隐埋缓冲掺杂层高压SBD器件新结构[J]. 微电子学, 2021, 51(1): 116. GAO Wenhao, SUN Qiming, RAN Qingyue, JIAN Peng, CHEN Wensuo. A New High Voltage SBD with Improved Buried Buffer Doped Structure[J]. Microelectronics, 2021, 51(1): 116.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!