中国激光, 2023, 50 (15): 1507105, 网络出版: 2023-07-17   

基于高分辨光声显微成像的肝癌微血管特征分析 下载: 520次

Characteristics Analysis of Micro‐vessels Liver Cancer Based on High Resolution Photoacoustic Microscopy
孙彤 1,2黄国家 3,*张振辉 1,2,**
作者单位
1 华南师范大学生物光子学研究院激光生命科学教育部重点实验室,广东 广州 510631
2 华南师范大学生物光子学研究院广东省激光生命科学重点实验室,广东 广州 510631
3 南方医科大学附属广东省医学科学院广东省人民医院医学研究部,广东 广州 510080
摘要
建立了小鼠原位肝癌模型,利用活体荧光成像系统激发的荧光信号对肿瘤进行了定位,通过光声显微成像系统观察了正常肝小叶、肿瘤中心和癌旁的微血管结构特征和血氧功能。结果表明,正常的血管分布均匀、分化良好,而肿瘤的血管分布不均匀且混乱,分支直径增加,更适合低氧环境。光声技术在研究肝细胞癌方面展现出巨大的潜力,可以为肿瘤抗血管生成治疗和诸多肝脏相关疾病的诊断提供更深入的见解。
Abstract
Objective

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and the second leading cause of cancer death worldwide. The development of HCC leads to abnormalities in the structure and function of blood vessels, which further lead to high pressure and hypoxia in the tumor microenvironment (TME). The most common clinical methods for identifying HCC nowadays are magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound. MRI can measure multifunctional parameters of the liver; however, it has significant limitations in imaging resolution and is costly. CT can image the blood vessels in the liver; however, it uses X-ray, thus increases the risk of cancer. Ultrasound imaging is widely used to evaluate HCC; however, its sensitivity and specificity are low. Therefore, a more complete and reliable technique to analyze the micro-vascular morphology of HCC and TME is urgently needed. Photoacoustic imaging is a rapidly developing imaging technology in recent years. It offers a wide range of potential applications in the field of medical imaging and can visualize the structure and function information of biological tissues without labeling of contrast agents or invasion. Photoacoustic imaging has high specificity and sensitivity in the diagnosis of HCC and can visualize functional imaging of tumors and morphological examination of blood vessels.

Methods

A mouse model of in situ liver cancer was established, and the bioluminescence signal was activated by an in vivo fluorescence imaging system to locate the tumor. The microvascular structure characteristics and oxygen saturation of normal liver lobules, tumor centers, and adjacent tumors were accurately observed using photoacoustic microscopy. The concentrations of oxygenated and deoxygenated hemoglobins were quantified using the spectroscopic separation method to calculate blood oxygen saturation. The photoacoustic images were converted into binary images, and the vascular signals were extracted for density and diameter analysis.

Results and Discussions

The results obtained using photoacoustic microscopy via two wavelengths (532 nm/559 nm) show that the blood vessels in the normal liver are evenly spaced and well differentiated, whereas large irregular vessels appear at the edges of the tumors, and the vascular joints are curved and dilated. The blood vessels inside the tumors are unevenly distributed and the branch diameter increases. The oxygen concentration in the blood around the tumors decreases, resulting in a hypoxic and high-pressure TME.

Conclusions

In microvascular monitoring of hepatocellular carcinoma, the photoacoustic imaging can provide high-resolution images, which can more accurately detect the morphology of tiny and abnormal blood vessels, improving the accuracy of early cancer detection. Through image analysis, indicators such as the density and diameter of microvessels and other information such as oxygenation level and metabolic activity of tumor tissues can be evaluated to assess the growth state of tumors and predict the degree of malignancy. Photoacoustic imaging demonstrates a high application potential for studying the development of HCC. It can provide further insights into the antiangiogenic therapy of tumors and the diagnosis of numerous liver-related diseases.

孙彤, 黄国家, 张振辉. 基于高分辨光声显微成像的肝癌微血管特征分析[J]. 中国激光, 2023, 50(15): 1507105. Tong Sun, Guojia Huang, Zhenhui Zhang. Characteristics Analysis of Micro‐vessels Liver Cancer Based on High Resolution Photoacoustic Microscopy[J]. Chinese Journal of Lasers, 2023, 50(15): 1507105.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!