硅酸盐学报, 2023, 51 (3): 602, 网络出版: 2023-04-10  

氧化钛对镁砂抗热震性能及抗渣渗透性能的影响

Effect of TiO2 on Thermal Shock Resistance and Slag Penetration Resistance of Magnesia
作者单位
1 武汉科技大学,省部共建耐火材料与冶金国家重点实验室,武汉 430081
2 武汉钢铁集团耐火材料有限责任公司,武汉 430082
摘要
为改善镁砂抗水化性能、抗热震性能及抗熔渣渗透性能,在轻烧氧化镁粉中添加1% (质量分数)、2%及3%的TiO2微粉制备镁质复合材料,研究了TiO2含量对材料烧结行为、显微结构及各性能的影响。结果表明:随TiO2添加量增加,游离CaO及部分MgO相继转化为CaTiO3及Mg2TiO4相,且MgO晶粒尺寸增大,样品抗水化性能显著提高。CaTiO3及Mg2TiO4晶间相的形成降低了样品的热膨胀系数,诱导裂纹发生偏转,因此,样品的抗热震性能也随TiO2增加逐步提高。此外,添加1%的TiO2样品,因MgO晶粒增大及高稳定性的CaTiO3晶间相形成,抗渣性能明显提高。然而,进一步增加TiO2,低稳定性的Mg2TiO4晶间相的生成显著降低了样品的抗渣渗透性能。
Abstract
To improve the resistance to hydration, thermal shock and slag penetration of magnesia, a magnesia based composite was prepared via adding TiO2 powder (i.e., 1% (in mass fraction), 2% and 3%) into a light burned magnesia powder. The effect of TiO2 content on the sintering behavior, microstructure and properties of the composite was investigated. The results show that free CaO and some MgO transform into CaTiO3 and Mg2TiO4 and the size of MgO grains increases as TiO2 addition increases, leading to an improvement in the hydration resistance. The formed CaTiO3 and Mg2TiO4 phases reduce the thermal expansion coefficient and induce the crack deflection as TiO2 content increases, therefore improving the thermal shock resistance of the specimens. Besides, as 1% TiO2 is added, the slag penetration resistance of the specimens is enhanced due to the increase in MgO grain size and the formation of high stable intergranular CaTiO3 phase. However, the further increasing TiO2 content reduces the slag penetration resistance due to the formation of low stable Mg2TiO4 phase at MgO grain boundaries.
参考文献

[1] 陈洋, 邓承继, 王杏, 等. 原位催化Si粉制备Si3N4复合MgO-C耐火材料[J]. 硅酸盐学报, 2019, 47(12): 1834-1840.

[2] JIN E D, YU J K, WEN T P, et al. Fabrication of high-density magnesia using vacuum compaction molding[J]. Ceram Int, 2018, 44(6): 6390-6394.

[3] 张宁轩, 肖国庆, 段锋, 等. 铜冶炼阳极炉镁铬质耐火材料损毁机理[J]. 硅酸盐学报, 2021, 49(9): 2025-2035.

[4] CHEN L G, LI S L, JONES P T, et al. Identification of magnesia-chromite refractory degradation mechanisms of secondary copper smelter linings[J]. J Eur Ceram Soc, 2016, 36(8): 2119-2132.

[5] CHEN M, LU C Y, YU J K. Improvement in performance of MgO-CaO refractories by addition of nano-sized ZrO2[J]. J Eur Ceram Soc, 2007, 27(16): 4633-4638.

[6] GRUBER D, SISTANINIA M, FASCHING C, et al. Thermal shock resistance of magnesia spinel refractories-investigation with the concept of configurational forces[J]. J Eur Ceram Soc, 2016, 36(16): 4301-4308.

[7] WAGNER C, WENZL C, GREGUREK D, et al. Thermodynamic and experimental investigations of high-temperature refractory corrosion by molten slags[J]. Metall Mater Trans B, 2017, 48: 119-131.

[8] CHEN L G, GUO M X, SHI H Y, et al. Influence of FeO/SiO2 and CaO/SiO2 ratios in iron-saturated ZnO-rich fayalite slags on the corrosion of MgO[J]. J Am Ceram Soc, 2016, 99: 3754-3760.

[9] 宋玉海. 镁砂纯度及玻璃熔料添加量对MgO质材料抗水化性的影响[J]. 耐火材料, 2014(2): 115.

[10] Ding J, Yuan W J, Li J, et al. Preparation and hydration resistance of MgO-MgAl2O4 composite refractory[J]. Adv Mater Res, 2012, 399-401: 851-854.

[11] HU Z, XU Y B, LI Y W, et al. Role of ZrO2 in sintering and mechanical properties of CaO containing magnesia from cryptocrystalline magnesite[J]. Ceram Int, 2022, 48(5): 6236-6244.

[12] GU Q, LIU G Q, LI H X, et al. Synthesis of MgO-MgAl2O4 refractory aggregates for application in MgO-C slide plate[J]. Ceram Int, 2019, 45(18): 24768-24776.

[13] 糜瑶, 徐义彪, 李亚伟, 等. MgO-ZrO2耐火骨料的制备及其抗热震行为[J]. 硅酸盐学报, 2021, 49(12): 2760-2766.

[14] ZHAO J L, HAO X, WANG S Y, et al. Sintering behavior and thermal shock resistance of aluminum titanate (Al2TiO5)-toughened MgO-based ceramics[J]. Ceram Int, 2021, 47: 26643-26650.

[15] ZHANG S, SARPOOLAKY H, MARRIOTT N J, et al. Penetration and corrosion of magnesia grain by silicate slags[J]. Br Ceram Trans, 2000, 99(6): 248-255.

[16] MUKAI K, TAO Z, GOTO K, et al. In-situ observation of slag penetration into MgO refractory[J]. Scand J Metall, 2002, 31(1): 68-78.

[17] ZHANG W X, HUANG A, ZOU Y S, et al. Corrosion modeling of magnesia aggregates in contact with CaO-MgO-SiO2 slags[J]. J Am Ceram Soc, 2020, 103(3): 2128-2136.

[18] LEE Y B, Park H C, OH K D, et al. Sintering and microstructure development in the system MgO-TiO2[J]. J Mater Sci, 1998, 33(17): 4321-4325.

[19] LIAO N, Jia D C, Yang Z H, et al. Mechanical properties and thermal shock resistance of Si2BC3N ceramics with ternary Al4SiC4 additive[J]. Ceram Int, 2018, 44(8): 9009-9017.

[20] XU T T, SU Y, SHI T, et al. Improving hydration resistance of MgO-CaO ceramics by in situ synthesized CaZrO3 coatings prepared using a non-hydrolytic sol[J]. Ceram Int, 2021, 47(2): 2165-2171.

[21] WANG Q H, HE G, DENG S X, et al. Wetting behavior and reaction mechanism of molten Si in contact with silica substrate[J]. Ceram Int, 2019, 45(17): 21365-21372.

[22] PASSI M, PAL B. A review on CaTiO3 photocatalyst: Activity enhancement methods and photocatalytic applications[J]. Powder Technol, 2021, 388: 274-304.

[23] GHASEMI-KAHRIZSANGI S, DEHSHEIKH H G, KARAMIAN E, et al. A comparative evaluation of the addition impact of nanometer- sized tetravalent oxides on the performance of doloma-magnesia ceramic refractories[J]. Ceram Int, 2018, 44 (2): 2058-2064.

[24] LUO Y J, GU H Z, ZHANG M J, et al. Research on thermal shock resistance of porous refractory material by strain-life fatigue approach[J]. Ceram Int, 2020, 46(10): 14884-14893.

[25] BUCEVAC D, OMERAEVI M, EGELJA A, et al. Effect of YAG content on creep resistance and mechanical properties of Al2O3-YAG composite[J]. Ceram Int, 2020, 46(10): 15998-16007.

[26] JIANG Y J, GUO R Y, BHALLA A S. Growth and properties of CaTiO3 single crystal fibers[J]. J Electroceram, 1998, 2(3): 199-203.

[27] SZCZERBA J, PEDZICH Z, NIKIEL M, et al. Influence of raw materials morphology on properties of magnesia-spinel refractories[J]. J Eur Ceram Soc, 2007, 27(2-3): 1683-1689.

[28] 潘波, 倪箐, 殷波, 等. Mullite-Si3N4/SiC复相陶瓷的制备及性能[J]. 硅酸盐学报, 2016, 44(9): 1259-1264.

[29] 陈丽敏, 索相波, 王安哲, 等. ZrB2基超高温陶瓷材料抗热震性能及热震失效机制研究进展[J]. 硅酸盐学报, 2018, 46(9): 1235-1243.

[30] HAN J S, HEO J H, PARK J H. Interfacial reaction between magnesia refractory and “FeO”-rich slag: Formation of magnesiowüstite layer[J]. Ceram Int, 2019, 45(8): 10481-10491.

[31] 马三宝, 鄢文, 林小丽, 等. 钢包渣对轻质方镁石-镁铝尖晶石耐火材料的侵蚀机理[J]. 硅酸盐学报, 2018, 46(3): 443-448.

李真真, 徐义彪, 王庆虎, 朱天彬, 戴亚洁, 周芬, 徐超. 氧化钛对镁砂抗热震性能及抗渣渗透性能的影响[J]. 硅酸盐学报, 2023, 51(3): 602. 李真真, 徐义彪, 王庆虎, 朱天彬, 戴亚洁, 周芬, 徐超. Effect of TiO2 on Thermal Shock Resistance and Slag Penetration Resistance of Magnesia[J]. Journal of the Chinese Ceramic Society, 2023, 51(3): 602.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!