中国激光, 2023, 50 (9): 0907105, 网络出版: 2023-04-25   

基于OCT高精度定量的视网膜光生理功能成像技术 下载: 615次

High‑Accuracy Quantitative Functional Imaging Technique for Retinal Opto‑Physiology with Optical Coherence Tomography
作者单位
大连理工大学光电工程与仪器科学学院,辽宁 大连 116024
引用该论文

马艳红, 张鹏飞. 基于OCT高精度定量的视网膜光生理功能成像技术[J]. 中国激光, 2023, 50(9): 0907105.

Yanhong Ma, Pengfei Zhang. High‑Accuracy Quantitative Functional Imaging Technique for Retinal Opto‑Physiology with Optical Coherence Tomography[J]. Chinese Journal of Lasers, 2023, 50(9): 0907105.

参考文献

[1] Wong W L, Su X Y, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis[J]. The Lancet Global Health, 2014, 2(2): e106-e116.

[2] Song P G, Du Y H, Chan K Y, et al. The national and subnational prevalence and burden of age-related macular degeneration in China[J]. Journal of Global Health, 2017, 7(2): 020703.

[3] Discovery Eye Foundation. Layers of the retina[EB/OL]. (2016-01-26)[2022-08-06]. https://discoveryeye.org/layers-of-the-retina/.

[4] Verbakel S K, van Huet R A C, Boon C J F, et al. Non-syndromic retinitis pigmentosa[J]. Progress in Retinal and Eye Research, 2018, 66: 157-186.

[5] 罗学廷, 刘洋, 汪枫桦, 等. 基因治疗视网膜色素变性的机遇与挑战[J]. 中国科学: 生命科学, 2022, 52(7): 1015-1022.

    Luo X T, Liu Y, Wang F H, et al. Opportunities and challenges of gene therapy for retinitis pigmentosa[J]. Scientia Sinica: Vitae, 2022, 52(7): 1015-1022.

[6] Mitchell P, Liew G, Gopinath B, et al. Age-related macular degeneration[J]. The Lancet, 2018, 392(10153): 1147-1159.

[7] Fricke T R, Jong M, Naidoo K S, et al. Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta-analysis and modelling[J]. The British Journal of Ophthalmology, 2018, 102(7): 855-862.

[8] Casson R J, Chidlow G, Wood J P M, et al. Definition of glaucoma: clinical and experimental concepts[J]. Clinical & Experimental Ophthalmology, 2012, 40(4): 341-349.

[9] Datta S, Cano M, Ebrahimi K, et al. The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD[J]. Progress in Retinal and Eye Research, 2017, 60: 201-218.

[10] Apte R S. Gene therapy for retinal degeneration[J]. Cell, 2018, 173(1): 5.

[11] Biesemeier A, Taubitz T, Julien S, et al. Choriocapillaris breakdown precedes retinal degeneration in age-related macular degeneration[J]. Neurobiology of Aging, 2014, 35(11): 2562-2573.

[12] Zhang S, Zhang G Y, Zhou X, et al. Changes in choroidal thickness and choroidal blood perfusion in Guinea pig myopia[J]. Investigative Ophthalmology & Visual Science, 2019, 60(8): 3074-3083.

[13] Wong C W, Phua V, Lee S Y, et al. Is choroidal or scleral thickness related to myopic macular degeneration?[J]. Investigative Ophthalmology & Visual Science, 2017, 58(2): 907-913.

[14] Tode J, Richert E, Koinzer S, et al. Thermal stimulation of the retina reduces bruch's membrane thickness in age related macular degeneration mouse models[J]. Translational Vision Science & Technology, 2018, 7(3): 2.

[15] Collin G B, Gogna N, Chang B, et al. Mouse models of inherited retinal degeneration with photoreceptor cell loss[J]. Cells, 2020, 9(4): 931.

[16] FrishmanL J. Origins of the electroretinogram[M]//Heckenlively J R, Arden G B. Principles and practice of clinical electrophysiology of vision. Cambridge: MIT Press, 2006: 139-183.

[17] Brown K T. The electroretinogram: its components and their origins[J]. Vision Research, 1968, 8(6): 633-677.

[18] Hood D C, Odel J G, Chen C S, et al. The multifocal electroretinogram[J]. Journal of Neuro Ophthalmology, 2003, 23(3): 225-235.

[19] Berninger T A, Arden G B. The pattern electroretinogram[J]. Eye, 1988, 2(1): S257-S283.

[20] Bernardes R, Serranho P, Lobo C. Digital ocular fundus imaging: a review[J]. Ophthalmologica, 2011, 226(4): 161-181.

[21] 黎黎, 张悦, 李萌茜, 等. 激光技术在眼科的应用现状与进展[J]. 中国激光, 2022, 49(5): 0507103.

    Li L, Zhang Y, Li M X, et al. Current application and progress of laser technology in ophthalmology[J]. Chinese Journal of Lasers, 2022, 49(5): 0507103.

[22] Laíns I, Wang J C, Cui Y, et al. Retinal applications of swept source optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA)[J]. Progress in Retinal and Eye Research, 2021, 84: 100951.

[23] 薛平. 高性能光学相干层析成像的研究[J]. 中国激光, 2021, 48(15): 1517001.

    Xue P. Development of high-performance optical coherence tomography[J]. Chinese Journal of Lasers, 2021, 48(15): 1517001.

[24] Lazebnik M, Marks D L, Potgieter K, et al. Functional optical coherence tomography for detecting neural activity through scattering changes[J]. Optics Letters, 2003, 28(14): 1218-1220.

[25] Yao X C, Yamauchi A, Perry B, et al. Rapid optical coherence tomography and recording functional scattering changes from activated frog retina[J]. Applied Optics, 2005, 44(11): 2019-2023.

[26] Bizheva K, Pflug R, Hermann B, et al. Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(13): 5066-5071.

[27] Srinivasan V J, Wojtkowski M, Fujimoto J G, et al. In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography[J]. Optics Letters, 2006, 31(15): 2308-2310.

[28] Srinivasan V J, Chen Y, Duker J S, et al. In vivo functional imaging of intrinsic scattering changes in the human retina with high-speed ultrahigh resolution OCT[J]. Optics Express, 2009, 17(5): 3861-3877.

[29] Yao X C, Wang B Q. Intrinsic optical signal imaging of retinal physiology: a review[J]. Journal of Biomedical Optics, 2015, 20(9): 090901.

[30] Wang B Q, Lu R W, Zhang Q X, et al. En face optical coherence tomography of transient light response at photoreceptor outer segments in living frog eyecup[J]. Optics Letters, 2013, 38(22): 4526-4529.

[31] Zhang Q X, Lu R W, Wang B Q, et al. Functional optical coherence tomography enables in vivo physiological assessment of retinal rod and cone photoreceptors[J]. Scientific Reports, 2015, 5: 9595.

[32] Thapa D, Wang B Q, Lu Y M, et al. Enhancement of intrinsic optical signal recording with split spectrum optical coherence tomography[J]. Journal of Modern Optics, 2017, 64(17): 1800-1807.

[33] Wang B Q, Lu Y M, Yao X C. In vivo optical coherence tomography of stimulus-evoked intrinsic optical signals in mouse retinas[J]. Journal of Biomedical Optics, 2016, 21(9): 096010.

[34] Son T, Kim T H, Ma G Y, et al. Functional intrinsic optical signal imaging for objective optoretinography of human photoreceptors[J]. Experimental Biology and Medicine, 2021, 246(6): 639-643.

[35] Son T, Wang B Q, Thapa D, et al. Optical coherence tomography angiography of stimulus evoked hemodynamic responses in individual retinal layers[J]. Biomedical Optics Express, 2016, 7(8): 3151-3162.

[36] Son T, Alam M, Toslak D, et al. Functional optical coherence tomography of neurovascular coupling interactions in the retina[J]. Journal of Biophotonics, 2018, 11(12): e201800089.

[37] Radhakrishnan H, Srinivasan V J. Multiparametric optical coherence tomography imaging of the inner retinal hemodynamic response to visual stimulation[J]. Journal of Biomedical Optics, 2013, 18(8): 086010.

[38] Leitgeb R A, Bachmann A H, Villiger M, et al. Measurement of retinal physiology using functional Fourier domain OCT concepts[J]. Proceedings of SPIE, 2007, 6426: 642609.

[39] Schmoll T, Kolbitsch C, Leitgeb R A. In vivo functional retinal optical coherence tomography[J]. Journal of Biomedical Optics, 2010, 15(4): 041513.

[40] Tumlinson A R, Hermann B, Hofer B, et al. Techniques for extraction of depth-resolved in vivo human retinal intrinsic optical signals with optical coherence tomography[J]. Japanese Journal of Ophthalmology, 2009, 53(4): 315-326.

[41] Messner A, dos Santos V A, Stegmann H, et al. Quantification of intrinsic optical signals in the outer human retina using optical coherence tomography[J]. Annals of the New York Academy of Sciences, 2022, 1510(1): 145-157.

[42] Mathis T, Vasseur V, Zuber K, et al. Light-induced modifications of the outer retinal hyperreflective layers on spectral-domain optical coherence tomography in humans: an experimental study[J]. Acta Ophthalmologica, 2021, 99(7): 765-772.

[43] Moayed A A, Hariri S, Choh V, et al. In vivo imaging of intrinsic optical signals in chicken retina with functional optical coherence tomography[J]. Optics Letters, 2011, 36(23): 4575-4577.

[44] Moayed A A, Hariri S, Bizheva K, et al. Correlation of visually evoked intrinsic optical signals and electroretinograms recorded from chicken retina with a combined functional optical coherence tomography and electroretinography system[J]. Journal of Biomedical Optics, 2012, 17(1): 016011.

[45] Tan B Y, Mason E, MacLellan B, et al. Correlation of visually evoked functional and blood flow changes in the rat retina measured with a combined OCT+ERG system[J]. Investigative Ophthalmology & Visual Science, 2017, 58(3): 1673-1681.

[46] Suzuki W, Tsunoda K, Hanazono G, et al. Stimulus-induced changes of reflectivity detected by optical coherence tomography in macaque retina[J]. Investigative Ophthalmology & Visual Science, 2013, 54(9): 6345-6354.

[47] Erchova I, Tumlinson A R, Fergusson J, et al. Optophysiological characterisation of inner retina responses with high-resolution optical coherence tomography[J]. Scientific Reports, 2018, 8: 1813.

[48] Bissig D, Zhou C G, Le V, et al. Optical coherence tomography reveals light-dependent retinal responses in Alzheimer’s disease[J]. NeuroImage, 2020, 219: 117022.

[49] Hunter J J, Merigan W H, Schallek J B. Imaging retinal activity in the living eye[J]. Annual Review of Vision Science, 2019, 5: 15-45.

[50] Hillmann D, Spahr H, Pfäffle C, et al. In vivo optical imaging of physiological responses to photostimulation in human photoreceptors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(46): 13138-13143.

[51] Zhang P F, Zawadzki R J, Goswami M, et al. In vivo optophysiology reveals that G-protein activation triggers osmotic swelling and increased light scattering of rod photoreceptors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(14): E2937-E2946.

[52] Lu C D, Lee B K, Schottenhamml J, et al. Photoreceptor layer thickness changes during dark adaptation observed with ultrahigh-resolution optical coherence tomography[J]. Investigative Ophthalmology & Visual Science, 2017, 58(11): 4632-4643.

[53] Spahr H, Pfäffle C, Burhan S, et al. Phase-sensitive interferometry of decorrelated speckle patterns[J]. Scientific Reports, 2019, 9: 11748.

[54] Pfäffle C, Spahr H, Kutzner L, et al. Simultaneous functional imaging of neuronal and photoreceptor layers in living human retina[J]. Optics Letters, 2019, 44(23): 5671-5674.

[55] Miller E B, Zhang P F, Ching K, et al. In vivo imaging reveals transient microglia recruitment and functional recovery of photoreceptor signaling after injury[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(33): 16603-16612.

[56] Zhang P F, Shibata B, Peinado G, et al. Measurement of diurnal variation in rod outer segment length in vivo in mice with the OCT optoretinogram[J]. Investigative Ophthalmology & Visual Science, 2020, 61(3): 9.

[57] Zhang L J, Dong R Y, Zawadzki R J, et al. Volumetric data analysis enabled spatially resolved optoretinogram to measure the functional signals in the living retina[J]. Journal of Biophotonics, 2022, 15(3): e202100252.

[58] Pijewska E, Zhang P F, Meina M, et al. Extraction of phase-based optoretinograms (ORG) from serial B-scans acquired over tens of seconds by mouse retinal raster scanning OCT system[J]. Biomedical Optics Express, 2021, 12(12): 7849-7871.

[59] Azimipour M, Migacz J V, Zawadzki R J, et al. Functional retinal imaging using adaptive optics swept-source OCT at 1.6 MHz[J]. Optica, 2019, 6(3): 300-303.

[60] Azimipour M, Valente D, Vienola K V, et al. Optoretinogram: optical measurement of human cone and rod photoreceptor responses to light[J]. Optics Letters, 2020, 45(17): 4658-4661.

[61] Zhang F R, Kurokawa K, Lassoued A, et al. Cone photoreceptor classification in the living human eye from photostimulation-induced phase dynamics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(16): 7951-7956.

[62] Lassoued A, Zhang F R, Kurokawa K, et al. Cone photoreceptor dysfunction in retinitis pigmentosa revealed by optoretinography[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(47): 2107444118.

[63] Pandiyan V P, Jiang X Y, Maloney-Bertelli A, et al. High-speed adaptive optics line-scan OCT for cellular-resolution optoretinography[J]. Biomedical Optics Express, 2020, 11(9): 5274-5296.

[64] Pandiyan V P, Maloney-Bertelli A, Kuchenbecker J A, et al. The optoretinogram reveals the primary steps of phototransduction in the living human eye[J]. Science Advances, 2020, 6(37): eabc1124.

[65] Boyle K C, Chen Z C, Ling T, et al. Mechanisms of light-induced deformations in photoreceptors[J]. Biophysical Journal, 2020, 119(8): 1481-1488.

[66] Pandiyan V P, Nguyen P T, Pugh E N,, et al. Human cone elongation responses can be explained by photoactivated cone opsin and membrane swelling and osmotic response to phosphate produced by RGS9-catalyzed GTPase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(39): e2202485119.

[67] Li Y C, Fariss R N, Qian J W, et al. Light-induced thickening of photoreceptor outer segment layer detected by ultra-high resolution OCT imaging[J]. Investigative Ophthalmology & Visual Science, 2016, 57(9): OCT105-OCT111.

[68] Li Y C, Zhang Y K, Chen S, et al. Light-dependent OCT structure changes in photoreceptor degenerative rd 10 mouse retina[J]. Investigative Ophthalmology & Visual Science, 2018, 59(2): 1084-1094.

[69] Berkowitz B A, Podolsky R H, Qian H H, et al. Mitochondrial respiration in outer retina contributes to light-evoked increase in hydration in vivo[J]. Investigative Ophthalmology & Visual Science, 2018, 59(15): 5957-5964.

[70] Gao S S, Li Y C, Bissig D, et al. Functional regulation of an outer retina hyporeflective band on optical coherence tomography images[J]. Scientific Reports, 2021, 11: 10260.

[71] Berkowitz B A, Podolsky R H, Childers K L, et al. Functional changes within the rod inner segment ellipsoid in wildtype mice: an optical coherence tomography and electron microscopy study[J]. Investigative Opthalmology & Visual Science, 2022, 63(8): 8.

[72] Berkowitz B A, Podolsky R H, Lins-Childers K M, et al. Outer retinal oxidative stress measured in vivo using QUEnch-assiSTed (QUEST) OCT[J]. Investigative Ophthalmology & Visual Science, 2019, 60(5): 1566-1570.

[73] Berkowitz B A, Podolsky R H, Childers K L, et al. Rod photoreceptor neuroprotection in dark-reared Pde6brd10 mice[J]. Investigative Ophthalmology & Visual Science, 2020, 61(13): 14.

[74] Messner A, Werkmeister R M, Seidel G, et al. Light-induced changes of the subretinal space of the temporal retina observed via optical coherence tomography[J]. Scientific Reports, 2019, 9: 13632.

[75] Tomczewski S, Węgrzyn P, Borycki D, et al. Light-adapted flicker optoretinograms captured with a spatio-temporal optical coherence-tomography (STOC-T) system[J]. Biomedical Optics Express, 2022, 13(4): 2186-2201.

[76] Sun P C, Li Q, Li H, et al. Depth-resolved physiological response of retina to transcorneal electrical stimulation measured with optical coherence tomography[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(5): 905-915.

[77] Su X F, Zheng H, Li Q, et al. Retinal neurovascular responses to transcorneal electrical stimulation measured with optical coherence tomography[J]. Experimental Biology and Medicine, 2020, 245(4): 289-300.

[78] Deng X F, Liu K Y, Zhu T P, et al. Dynamic inverse SNR-decorrelation OCT angiography with GPU acceleration[J]. Biomedical Optics Express, 2022, 13(6): 3615-3628.

[79] 张子艺, 俞晨阳, 乔依琳, 等. 显微集成术中光学相干断层血流造影术[J]. 中国激光, 2022, 49(15): 1507301.

    Zhang Z Y, Yu C Y, Qiao Y L, et al. Intraoperative optical coherence tomography angiography with micro integration[J]. Chinese Journal of Lasers, 2022, 49(15): 1507301.

[80] Kim T H, Ma G Y, Son T, et al. Functional optical coherence tomography for intrinsic signal optoretinography: recent developments and deployment challenges[J]. Frontiers in Medicine, 2022, 9: 864824.

[81] Kim T H, Wang B Q, Lu Y M, et al. Functional optical coherence tomography enables in vivo optoretinography of photoreceptor dysfunction due to retinal degeneration[J]. Biomedical Optics Express, 2020, 11(9): 5306-5320.

马艳红, 张鹏飞. 基于OCT高精度定量的视网膜光生理功能成像技术[J]. 中国激光, 2023, 50(9): 0907105. Yanhong Ma, Pengfei Zhang. High‑Accuracy Quantitative Functional Imaging Technique for Retinal Opto‑Physiology with Optical Coherence Tomography[J]. Chinese Journal of Lasers, 2023, 50(9): 0907105.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!