硅酸盐通报, 2022, 41 (7): 2474, 网络出版: 2022-08-04  

LaMeAl11O19(Me=Cu, Zn)陶瓷体材料的抗CMAS性能研究

Study on CMAS Resistance of LaMeAl11O19(Me=Cu, Zn) Ceramic Bulk Materials
作者单位
武汉理工大学硅酸盐建筑材料国家重点实验室, 武汉 430070
摘要
随着燃气涡轮机的应用温度不断提升, 陶瓷材料的抗CaO-MgO-Al2O3-SiO2(CMAS)性能越来越重要。通过X射线衍射(XRD)、扫描电镜(SEM)等测试方法, 研究了LaMeAl11O19(Me=Cu, Zn)陶瓷体材料在不同温度和时间条件下的抗CMAS腐蚀行为。结果表明, LaZnAl11O19(LZA)和LaCuAl11O19(LCA)体材料的腐蚀产物都包括透辉石(Ca(Mg,Al)(Si,Al)O7)和钙长石(CaAl2Si2O8)。随着腐蚀温度的提高和时间的延长, 腐蚀深度增加, Ca(Mg,Al)(Si,Al)O7逐渐转变为CaAl2Si2O8。LZA和LCA体材料的CMAS腐蚀可以用“溶解-析出”机制解释。体材料逐渐溶解到CMAS中, 形成Ca(Mg,Al)(Si,Al)O7, 进而逐渐转变为CaAl2Si2O8, 使难以结晶的透辉石相转变为易结晶的钙长石相。La原子为析晶的晶核, CMAS玻璃相与体材料之间存在界面能, 这些因素共同促进了CaAl2Si2O8在CMAS内部以及两者的界面处析出厚板状晶体。
Abstract
With the increasing application temperature of gas turbine, the CMAS resistance of ceramic materials is becoming more and more important. In this paper, the CaO-MgO-Al2O3-SiO2 (CMAS) corrosion resistance behavior of LaMeAl11O19 (Me=Cu,Zn) ceramic bulk materials under different temperatures and time was studied by X-ray diffraction (XRD), scanning electron microscope (SEM) and so on. The results show that the corrosion products of both LaZnAl11O19(LZA) and LaCuAl11O19 (LCA) bulk materials include diopside (Ca(Mg,Al)(Si,Al)O7) and anorthite (CaAl2Si2O8). With the increase of corrosion temperature and time, the corrosion depth increases, and Ca(Mg,Al)(Si,Al)O7 gradually transforms into CaAl2Si2O8. The CMAS corrosion of LZA and LCA bulk materials can be explained by “dissolution-precipitation” mechanism. The bulk materials gradually dissolve into the CMAS, forming Ca(Mg,Al)(Si,Al)O7, and then gradually transform into CaAl2Si2O8, so that the diopside phase which is difficult to crystallize is transformed into the anorthite phase which is easy to crystallize. La atom is the crystal nucleus of devitrification, and the interfacial energy exists between the CMAS glass phase and the bulk materials. These factors together promote the precipitation of thick plate-like crystals of CaAl2Si2O8 inside CMAS and at the interface of CaAl2Si2O8 and CMAS.
参考文献

[1] DAROLIA R. Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects[J]. International Materials Reviews, 2013, 58(6): 315-348.

[2] BOROM M P, JOHNSON C A, PELUSO L A. Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings[J]. Surface and Coatings Technology, 1996, 86/87: 116-126.

[3] KRMER S, YANG J, LEVI C G, et al. Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2 (CMAS) deposits[J]. Journal of the American Ceramic Society, 2006, 89(10): 3167-3175.

[4] SONG W J, LAVALLE Y, WADSWORTH F B, et al. Wetting and spreading of molten volcanic ash in jet engines[J]. The Journal of Physical Chemistry Letters, 2017, 8(8): 1878-1884.

[5] WELLMAN R, WHITMAN G, NICHOLLS J R. CMAS corrosion of EB PVD TBCs: identifying the minimum level to initiate damage[J]. International Journal of Refractory Metals and Hard Materials, 2010, 28(1): 124-132.

[6] MERCER C, FAULHABER S, EVANS A G, et al. A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration[J]. Acta Materialia, 2005, 53(4): 1029-1039.

[7] CLARKE D R, OECHSNER M, PADTURE N P. Thermal-barrier coatings for more efficient gas-turbine engines[J]. MRS Bulletin, 2012, 37(10): 891-898.

[8] KRMER S, FAULHABER S, CHAMBERS M, et al. Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration[J]. Materials Science and Engineering: A, 2008, 490(1/2): 26-35.

[9] WANG C G, LU H R, HUANG Z Y, et al. Enhanced anti-deliquescent property and ultralow thermal conductivity of magnetoplumbite-type LnMeAl11O19 materials for thermal barrier coating[J]. Journal of the American Ceramic Society, 2018, 101(3): 1095-1104.

[10] 刘 帆.磁铅石型稀土六铝酸盐热障涂层的制备及性能研究[D].武汉:武汉理工大学,2020.

[11] CUI J J, OUYANG J H, LIU Z G. Hot corrosion behavior of LaMgAl11O19 ceramic coated with molten CMAS deposits at temperature of 1 250 ℃ in air[J]. Journal of Alloys and Compounds, 2016, 685: 316-321.

[12] 王亚军,马欣新,马 瑞,等.LaMgAl11O19涂层的CMAS侵蚀行为研究[J].稀有金属材料与工程,2021,50(8):2927-2932.

[13] ZENG J Y, SUN J B, LIANG P P, et al. Heat-treated lanthanum magnesium hexaaluminate coatings exposed to molten calcium-magnesium-alumino-silicate[J]. Ceramics International, 2019, 45(9): 11723-11733.

[14] 曹学强.热障涂层新材料和新结构[M].北京:科学出版社,2016:56-60.

[15] 陆浩然,郭小钧,张晨光,等.二价Me2+对磁铁铅矿型LaMeAl11O19相结构及热物理性能的影响[J].稀有金属材料与工程,2015,44(s1):791-794.

[16] GUO L, GUO H B, PENG H, et al. Thermophysical properties of Yb2O3 doped Gd2Zr2O7 and thermal cycling durability of (Gd0.9Yb0.1)2Zr2O7/YSZ thermal barrier coatings[J]. Journal of the European Ceramic Society, 2014, 34(5): 1255-1263.

[17] ABDEL-HAMEED S A M, ELWAN R L. Effect of La2O3, CoO, Cr2O3 and MoO3 nucleating agents on crystallization behavior and magnetic properties of ferromagnetic glass-ceramic in the system Fe2O3·CaO·ZnO·SiO2[J]. Materials Research Bulletin, 2012, 47(5): 1233-1238.

[18] PADTURE N P, CHAN H M. Improved flaw tolerance in alumina containing 1 vol% anorthite via crystallization of the intergranular glass[J]. Journal of the American Ceramic Society, 1992, 75(7): 1870-1875.

[19] LO C L, DUH J G, CHIOU B S, et al. Microstructure characteristics for anorthite composite glass with nucleating agents of TiO2 under non-isothermal crystallization[J]. Materials Research Bulletin, 2002, 37(12): 1949-1960.

[20] WANG P, YU L P, XIAO H N, et al. Influence of nucleation agents on crystallization and machinability of mica glass-ceramics[J]. Ceramics International, 2009, 35(7): 2633-2638.

蔚海浪, 曹学强, 邓龙辉, 蒋佳宁. LaMeAl11O19(Me=Cu, Zn)陶瓷体材料的抗CMAS性能研究[J]. 硅酸盐通报, 2022, 41(7): 2474. WEI Hailang, CAO Xueqiang, DENG Longhui, JIANG Jianing. Study on CMAS Resistance of LaMeAl11O19(Me=Cu, Zn) Ceramic Bulk Materials[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(7): 2474.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!