光谱学与光谱分析, 2023, 43 (3): 665, 网络出版: 2023-04-07  

电火花诱导击穿光谱技术的发展及研究应用分析

Development and Application of Spark-Induced Breakdown Spectroscopy
作者单位
1 中国矿业大学安全工程学院, 江苏 徐州 221116
2 中国矿业大学职业健康研究院, 江苏 徐州 221116
摘要
电火花诱导击穿光谱(SIBS)技术是一种基于原子发射光谱学的物质浓度与成分的定性、 定量分析技术。 与传统的实验室分析技术如电感耦合等离子体原子发射光谱(ICP-AES)、 原子吸收光谱(AAS)、 质谱(MS)等相比具有实时、 实地、 在线快速检测、 高灵敏度以及低成本、 小体积、 维护简单等优点。 目前对该技术已有的研究集中在气溶胶成分分析、 土壤成分分析、 金属颗粒物浓度检测、 水泥成分分析等方向, 在环境监测、 工业卫生、 食品安全、 生物医疗等领域都有广泛且良好的应用前景。 从SIBS技术的基本原理入手, 综述了其光谱分析的原理, 即利用高压脉冲电源产生的电火花激发被测物体表面, 使被测物体在电源正负极间产生等离子体, 利用光谱仪光纤探头收集等离子体冷却过程中通过跃迁放出的光子与特征辐射谱线, 由于不同元素具有独特的特征谱线, 进而可以根据特征谱线对被测物质进行成分与浓度的定性和定量分析; 接着分析了影响SIBS技术光谱图像和光谱分析的相关因素如脉冲电源参数、 电极材料与入射角度和等离子体本身特性等, 并定量地指出了部分因素与光谱信号强弱的关系; 综述了该技术在发展过程中的一些技术革新和应用创新如激光+电火花诱导(LA-SIBS)、 高重复频率激光烧蚀电火花诱导击穿(HRR-LA-SIBS)、 超声波雾化+电火花诱导(UN-SIBS)、 粒子流电火花诱导击穿(PF-SIBS)等, 并简要说明了SIBS技术目前应用的一些领域、 应用特点以及对该技术未来发展方向的启示; 根据电火花诱导击穿光谱技术的原理缺陷以及在应用中暴露出来的一些问题, 列出了该技术目前面临的挑战如设备技术成本、 电火花能量、 环境噪声、 样品污染等; 最后, 对电火花诱导击穿光谱技术未来的研究方向和发展趋势进行了展望。
Abstract
Spark-induced breakdown spectroscopy (SIBS) is a qualitative and quantitative analysis technology of substance concentration and composition based on atomic emission spectroscopy. Compared with traditional laboratory analytical techniques such as inductively coupled plasma atomic emission spectroscopy (ICP-AES), atomic absorption spectrometry (AAS) and mass spectroscopy, it has the advantages of real-time, in situ, on-line rapid detection, high sensitivity, low cost, small volume and simple maintenance. Currently, the existing researches on this technology focus on aerosol composition analysis, soil composition analysis, metal particle concentration detection, cement composition analysis and so on. It has extensive and promising applications in environmental monitoring, industrial health, food safety, biomedicine, etc. Starting with the basic principle of SIBS, this paper summarizes the principle of spectral analysis, which is that the electric spark generated by the high-voltage pulse power supply is used to excite the surface of the measured object so that the measured object generates plasma between the positive and negative poles of the power supply. The optical fiber probe of the spectrometer is used to collect the photons and characteristic radiation spectra released through the transition during the plasma cooling process. Because different elements have unique characteristic spectra, the qualitative and quantitative analysis of the composition and concentration of the measured substance can be carried out according to the characteristic spectrum; Then, related factors affecting the spectral image and spectral analysis of SIBS, such as the parameters of pulse power supply, electrode material and incident angle, and the characteristics of plasma itself, are analyzed, and the relationship between some factors and the intensity of spectral signal is pointed out quantitatively; This paper summarizes some technological innovations and application innovations like laser ablation assisted spark induced breakdown spectroscopy (LA-SIBS), high repetition rate laser ablation spark induced breakdown spectroscopy (HRR-LA-SIBS), ultrasonic atomization assisted spark induced breakdown spectroscopy (UN-SIBS), particle flow spark induced breakdown spectroscopy (PF-SIBS), etc. in the development process of SIBS, and briefly explains some application fields, application characteristics and enlightenment to the future development direction of SIBS technology. According to the principal defects of SIBS and some problems exposed in its application, the challenges faced by this technology are listed, such as equipment technology cost, spark energy, environmental noise, sample contamination, etc. Finally, the future research direction and development trend of spark induced breakdown spectroscopy is prospected.
参考文献

[1] Hunter A J R, Morency J R, Senior C L, et al. Journal of the Air & Waste Management Association, 2000, 50(1): 111.

[2] Taefi N, Khalaji M, Tavassoli S H. Cement and Concrete Research, 2010, 40(7): 1114.

[3] Golloch A, Siegmund D. Fresenius’ Journal of Analytical Chemistry, 1997, 358(7-8): 804.

[4] Zheng Lina, Kulkarni P, Diwakar P. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 144: 55.

[5] Hunter A J R, Davis S J, Piper L G, et al. Applied Spectroscopy, 2000, 54(4): 575.

[6] Kammermann T, Kreutner W, Trottmann M, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 148: 152.

[7] Miziolek A, Palleschi V, Schechter I. Laser-Induced Breakdown Spectroscopy Fundamentals and Applications. Cambridge University Press, 2006.

[8] Khalaji M, Roshanzadeh B, Mansoori A, et al. Optics and Lasers in Engineering, 2012, 50(2): 110.

[9] Diwakar P, Kulkarni P. Journal of Analytical Atomic Spectrometry, 2012, 27(7): 1101.

[10] Danzer K, Venth K. Fresenius’ Journal of Analytical Chemistry, 1994, 350(6): 339.

[11] Laqua K, Hagenah W D. Spectrochimica Acta, 1962, 18(2): 183.

[12] Webb C, Cooper C B, Zander A T, et al. Journal of Analytical Atomic Spectrometry, 1994, 9(3): 263.

[13] Coedo A G, Dorado M T, Cobo I G. Journal of Analytical Atomic Spectrometry, 1994, 9(3): 223.

[14] Ivanovic K A, Coleman D M, Kunz F W, et al. Applied Spectroscopy, 1992, 46(6): 894.

[15] Baumann H, Tzianabos A O, Brisson J R, et al. Biochemistry, 1992, 31(16): 4081.

[16] Merer R M, Wallace J S. Spark Spectroscopy for Spark Ignition Engine Diagnostics. SAE International in United State, 1995.

[17] Golloch A, Wilke K. Journal of Analytical Atomic Spectrometry, 1997, 12(10): 1225.

[18] Schmidt M S, Sorauf K J, Miller K E, et al. Applied Optics, 2012, 51(7): 176.

[19] Kawahara N, Tomita E, Takemoto S, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2009, 64(10): 1085.

[20] Hunter A J R, Piper L G. Laser Induced Breakdown Spectroscopy, 2006, 18: 585.

[21] Fansler T D, Stojkovic B, Drake M C, et al. Applied Physics B, 2002, 75(4-5): 577.

[22] Fischer J, Velji A, Spicher U, et al. SAE Technical Papers, 2004, 01: 1916.

[23] Fraser M E, Bauer A J R, Davis S J. Proc. SPIE, 1998, 3534: 1(doi: 10.1117/12.339004).

[24] Zheng Lina, Kulkarni P, Zavvos K, et al. Journal of Aerosol Science, 2017, 104: 66.

[25] Srungaram P K, Ayyalasomayajula K K, Fang Y Y, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2013, 87: 108.

[26] Walters J P. Applied Spectroscopy, 1969, 23(4): 317.

[27] Davari S A, Wexler A S. Atmospheric Measurement Techniques, 2020, 13(10): 5369.

[28] Zheng Lina, Kulkarni P, Dionysiou D D. Journal of Analytical Atomic Spectrometry, 2018, 33(3): 404.

[29] WANG Jian-wei, ZHANG Na-zhen, HOU Ke-yong, et al(王建伟, 张娜珍, 侯可勇, 等). Progress in Chemistry(化学进展), 2008, 20(7): 7.

[30] Fraser M E, Panagiotou T, Hunter A J R, et al. Plating and Surface Finishing, 2000, 87(1): 80.

[31] Letty C, Pastore A, Mastorakos E, et al. Experimental Thermal and Fluid Science, 2010, 34(3): 338.

[32] YIN Chun-jing, LIU Zhi-dong, LING Jia-jian, et al(尹纯晶, 刘志东, 凌加健, 等). Electromachining & Mould(电加工与模具), 2014, (3): 43.

[33] Kirpichnikov A A, Starikovskii A Y. IEEE Transactions on Plasma Science, 2008, 36(4): 898.

[34] GE Yan-feng, JIANG Bai-ling, LIU Dong-jie(葛延峰, 蒋百灵, 刘东杰). Rare Metal Materials and Engineering(稀有金属材料与工程), 2015, 44(8): 1948.

[35] Yan S C, Xu J L, Zhang L F, et al. Scientific Reports, 2018, 8(1): 1868.

[36] Zhou W D, Guo Y H, Zhang R R. Frontiers of Physics, 2020, 15(5): 2201.

[37] ZHANG Ling-qing, HAN Shen-sheng, XU Zhi-zhan, et al(张令清, 韩申生, 徐至展, 等). High Power Laser and Particle Beams(强激光与粒子束), 1995, 7(3): 339.

[38] Griem H R. Principles of Plasma Spectroscopy. Cambridge University Press, 1964.

[39] Aguilera J A, Aragon C. Spectrochimica Acta Part B: Atomic Spectroscopy, 2004, 59(12): 1861.

[40] LI Xia-fen, ZHOU Wei-dong, QIAN Hui-guo, et al(李霞芬, 周卫东, 钱惠国, 等). Acta Optica Sinica(光学学报), 2011, 31(11): 291.

[41] Brech F, Cross L. Appl. Spectrosc, 1962, 16(2): 59.

[42] Rasberry S D, Scribner B F, Margoshes M. Applied Optics, 1967, 6(1): 81.

[43] Li Qingxue, Chen Anmin, Zhang Dana, et al. Optik, 2021, 225: 165.

[44] ZHONG Shi-lei, QI Fu-jun, SUN Xin, et al(钟石磊, 亓夫军, 孙 欣). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2016, 36(4): 1225.

[45] Zhu Yanbei, Russo R E, Chan G C Y. Spectrochimica Acta Part B: Atomic Spectroscopy, 2021, 179: 106089.

[46] Wang Yarui, Li Runhua, Chen Yuqi. Spectrochimica Acta Part B: Atomic Spectroscopy, 2021, 177: 106077.

[47] Gao Jiankui, Kang Juan, Li Runhua, et al. Applied Optics, 2020, 59(13): 4091.

[48] CAO Yu, KANG Juan, CHEN Yu-qi, et al(曹 宇, 康 娟, 陈钰琦, 等). Chinese Journal of Lasers(中国激光), 2020, 47(6): 315.

郑丽娜, 宣鹏, 黄婧, 李佳林. 电火花诱导击穿光谱技术的发展及研究应用分析[J]. 光谱学与光谱分析, 2023, 43(3): 665. ZHENG Li-na, XUAN Peng, HUANG Jing, LI Jia-lin. Development and Application of Spark-Induced Breakdown Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2023, 43(3): 665.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!