光学与光电技术, 2017, 15 (6): 60, 网络出版: 2018-01-09  

光子晶体空气孔中质量分数对其禁带宽度影响的仿真分析

Analysis and Simulation Effect of Mass Fraction in the Air-Holes Photonic Crystal on Band Gap Width
作者单位
新疆大学物理科学与技术学院, 新疆 乌鲁木齐 830046
摘要
为了掌握光子晶体空气孔中液体质量分数对禁带宽度的影响,利用平面波展开法研究了由椭圆形空气孔介质周期性排列的长方晶格光子晶体在不同偏振模式下的禁带宽度。数值模拟显示:溶液的质量分数变化与光子晶体带隙宽度或输出功率变化接近线性关系,而线性相关程度受填充空气孔内液体质量分数的影响。进行了多组参数比对与优化,最终获得了线性度最高的禁带宽度和输出功率与溶液质量分数的对应关系。基于这个对应关系,提出了基于光子晶体带隙宽度测量的溶液质量分数检测方法。该方法可被应用于各蛋白质聚集探测、快速检测气体或液体质量分数、DNA检测等领域。
Abstract
In order to grasp the effect of solution mass fraction in the air hole of the photonic crystal on the band gap, the band gap width of rectangular lattice photonic crystal with periodic array of air holes in different polarization modes is studied by using plane wave expansion method. A two-dimensional rectangular lattice photonic crystal material Si is chosen as the substrate, filling the air hole with different solution of copper nitrate mass fraction materials which will be measured, and the photonic band gap width of the photonic crystal filled with solution mass fraction under different polarization modes is obtained. Simulation results show that the concentration change of solution mass fraction has a linear relationship with band gap width or output power changes and the linear correlation degree is affected by background medium column material. The obtained multiple parameters are compared and optimized, and eventually the linearity relationship between the band gap width or highest output power and the concentration of solution mass fraction is obtained. Based on this relation, a solution concentration detection method based on photonic crystal band gap width is proposed. This test method can be used in various protein aggregation detection, rapid detection of gas and the concentration of solution mass fraction, DNA testing, etc.
参考文献

[1] 王海洋. 周期结构材料力学和电磁动态特性研究[D]. 大连:大连理工大学, 2006

    WANG Hai-Yang. Study on mechanical and electromagnetic characteristics of materilals with periodic dynamic structures [D]. Dalian: Dalian University of Technology , 2006.

[2] 帕孜来提, 阿不都热苏力. 禁带理论应用于溶液浓度检测的研究[J]. 光学与光电技术, 2014, 12(6): 84-87.

    Pazilaiti, Abuduresuli. Research of solution concentration detection based on band gap structure theory[J]. Optics & Optoelectronic Technology, 2014, 12(6): 84-87.

[3] 阿不都热苏力, 帕孜来提, 阿布都外力. 光子晶体理论应用于二元溶液浓度测量的研究[J]. 激光与光电子学进展, 2015, 52(1): 011203-1.

    A Abudourexiti, Pazilaiti A, Abuduwaili. Research on the binary solution concentration detection based on photonic crystal theory[J]. Laser & Optoelectronics Progress, 2015, 52(1): 011203-1.

[4] 刘京. 基于光子晶体光纤的液体浓度检测方法研究[D]. 沈阳:东北大学信息科学与工程学院, 2010.

    LIU Jing. Study on the method for liquid concentration measurement based on photonic crystal fiber[D]. Shenyang: Northeastern University ,2010.

[5] 阿不都热苏力·阿不都热西提. 光子晶体带隙法在溶液浓度测量中的应用[J]. 激光杂志, 2014, 35(11): 51-53.

    A Abudourexiti. Application of photonic band gap structure method to the solution density measurement[J]. Laser Journal, 2014. 35(11): 51-53.

[6] 谷朝聪. 二维光子晶体生物传感器光谱特性分析[D]. 秦皇岛: 燕山大学, 2013.

    GU Chao-cong. Spectral characterization of two-dimensional photonic crystal biosensor[D]. Qinhuangdao: Yanshan University, 2013.

[7] C Sharma, T J R Kesavamoorthy, L J Shi, et al. A general photonic crystal sensing motif: creatinine in bodily fluids[J]. J Am Chem. Soc, 2004, 126(9): 2971-2977.

[8] 段廷蕊, 李海华, 孟子晖, 等.光子晶体应用于化学及生物传感器的研究进展[J]. 化学通报, 2009, 72(4): 298-305.

    DUAN Ting-rui, LI Hai-hua, MENG Zi-hui, et al. Application of photonic crystals in chemical and bio-sensors[J]. Chemistry Online, 2009, 72(4): 298-305.

[9] 荣民. 基于光纤传感技术的液体溶液浓度测量关键问题研究[D]. 保定:河北大学, 2008.

    RONG Min. Research of the key technologies for liquid concentration measurement based on optical fiber sensor [D]. Baoding: Hebei University, 2008.

[10] 苏红新, 王坤, 崔建华, 等. 光子晶体光纤传感器的研究进展[J]. 仪表技术与传感器, 2008, (2): 6-8

    SU Hong-xin, WANG Kun, CUI Jian-hua, et al. Research progress of photonic crystal fiber sensor[J]. Instrument Technique and Sensor, 2008, (2): 6-8

[11] G Palai, S K Tripathy, N Muduli, et al. A novel method to measure the strength of CygelTM by using two dimensional photonic crystal structures[C]. AIP Conference Proceedings, 2012, 1461, 383-386.

[12] 郑瑶. 硝酸铜电解排出液的回收利用研究[D]. 沈阳:东北大学, 2014.

    ZHENG Yao. Research on recycling of discharged copper nitrate electrolyte[D]. Shenyang: Northeastern University, 2014.

[13] Plihal M, Shambrook A, Maradudin A A, et al. Two-dimensional photonic band structures[J]. Opt. Comm., 1991, 80: 199-204.

[14] Pendry J B, Mackinnon A. Calculation of photon dispersion relations[J]. Phys. Rev. Lett., 1992, 69(19): 2772-2775.

[15] Peiming W, Andrzed A. Computation of dielectric constants of solvent mixtures and electrolyte solutions[J]. Fluid Phase Equilibria, 2001, 186(4): 103-122

阿卜杜外力江·伊米提, 阿不都热苏力·阿不都热西提. 光子晶体空气孔中质量分数对其禁带宽度影响的仿真分析[J]. 光学与光电技术, 2017, 15(6): 60. Abuduwailijiang·Yimiti, A Abuduresuli. Analysis and Simulation Effect of Mass Fraction in the Air-Holes Photonic Crystal on Band Gap Width[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2017, 15(6): 60.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!