光学与光电技术, 2023, 21 (6): 0080, 网络出版: 2024-02-29  

基于布里渊激光雷达的海水温度和盐度反演

Inversion of Seawater Temperature and Salinity Based on Brillouin Lidar
作者单位
1 西安理工大学 自动化与信息工程学院, 陕西 西安 710048
2 西安理工大学陕西省智能协同网络军民共建重点实验室, 陕西 西安 710000
3 齐鲁工业大学海洋仪器仪表研究所, 山东 青岛 266001
摘要
作为一种新型的激光探测雷达, 布里渊激光雷达可以用于海水参数的监测。针对现有的布里渊激光雷达反演模型存在反演精度和参数范围较小的缺点, 将频移和线宽作为自变量, 采用最小二乘法对温度与盐度进行了拟合, 提出了新的温度与盐度的反演模型。该模型提高了海水温度和盐度的反演精度与范围, 并从灵敏度、误差、不确定度三个方面对反演模型进行了分析。结果表明, 利用布里渊频移和线宽可以实现海洋温度和盐度的同步监测。在温度反演模型中, 布里渊线宽对温度的影响要大于频移对温度的影响, 新的模型温度反演范围从15 ℃≤T≤30 ℃扩大为10 ℃≤T≤30 ℃, 最大误差为0.17 ℃, 平均误差为0.07 ℃, 平均相对误差为0.27%, 比现有模型的精度提高了63.16%; 在盐度反演模型中, 布里渊频移对盐度的影响要大于线宽对盐度的影响, 该模型的反演范围也从30‰≤S≤35‰扩大为15‰≤S≤35‰, 最大误差为0.20‰, 平均误差为0.09‰, 平均相对误差为0.29%, 比现有模型的精度提高了77.50%。研究结果对布里渊激光雷达探测海水温度和盐度具有指导意义。
Abstract
As a new type of laser detection radar, Brillouin lidar can be used for monitoring seawater parameters. In view of the disadvantage of the existing Brillouin lidar inversion models that have smaller inversion accuracy and parameter range, the new inversion model for temperature and salinity is proposed by using the least squares method with frequency shift and linewidth as independent variables. This model improves the inversion accuracy and inversion range of temperature and salinity, and the inversion model is analyzed in terms of sensitivity, error and uncertainty. The results show that the Brillouin frequency shift and linewidth can be used to achieve simultaneous monitoring of ocean temperature and salinity. In the temperature inversion model, the effect of Brillouin linewidth on temperature is greater than that of frequency shift, and the temperature inversion range of the new model is extended from 15 ℃≤T≤30 ℃ to 10 ℃≤T≤30 ℃ with a maximum error of 0.17 ℃, an average error of 0.07 ℃ and an average relative error is 0.27%, which is 63.16% better than the accuracy of the existing model. In the salinity inversion model, the effect of Brillouin frequency shift on salinity is greater than that of linewidth, and the inversion range of the model is expanded from 30‰≤S≤35‰ to 15‰≤S≤35‰, with a maximum error of 0.20‰, an average error of 0.09‰ and an average relative error is 0.29%, which is 77.50% better than the accuracy of the existing model. The research results in this paper have guiding significance for Brillouin lidar to detect seawater temperature and salinity.
参考文献

[1] Li S, Shi J, Gong W, et al. Real-time detecting of Brillouin scattering in water with ICCD [C]//ICO20: Lasers and Laser Technologies. SPIE, 2005, 6028: 365-370.

[2] 华灯鑫, 王骏. 海洋激光遥感技术研究进展(特邀)[J]. 红外与激光工程, 2018, 47(9): 27-33. HUA Deng-xin, WANG Jun. Research progress of marine laser remote sensing technology (Invited)[J]. Infrared and Laser Engineering, 2018, 47(9): 27-33.

[3] Shi J, Xu N, Luo N, et al. Retrieval of sound-velocity profile in ocean by employing Brillouin scattering LiDAR [J]. Optics Express, 2022, 30(10): 16419-16431.

[4] Yuan D, Chen P, Mao Z, et al. Ocean mixed layer depth estimation using airborne Brillouin scattering lidar: Simulation and model[J]. Applied Optics, 2021, 60(36): 11180-11188.

[5] Liu D, J Shi, X Chen, et al. Brillouin lidar and related basic physics[J]. Frontiers of Physics in China, 2010, 5(1): 82-106.

[6] Hirschberg J G. The use of Brillouin and Raman scattering to measure temperature and salinity below the water surface [C]//Proceedings, Waste Heat Management and Utilization Conference, Miami Beach, 1977.

[7] Hickman G D, Harding J M, Carnes M, et al. Aircraft laser sensing of sound velocity in water: Brillouin scattering [J]. Remote Sensing of Environment, 1991, 36(3): 165-178.

[8] Fry E, Katz J, Liu D, et al. Temperature dependence of the Brillouin linewidth in water[J]. Journal of Modern Optics, 2002, 49(3-4): 411-418.

[9] Ma Y, Liang K, Lin H, et al. Simultaneous measurement of seawater temperature and salinity based on Brillouin backward scattering[J]. Journal of Optics, 2008, 28(8): 1508-1512.

[10] 高玮, 吕志伟, 何伟明, 等. 盐度和压强对布里渊雷达遥测海洋温度的影响[J]. 哈尔滨工业大学学报, 2008, 40(3): 354-357. GAO Wei, LU Zhi-wei, HE Wei-ming, et al. Effect of salinity and pressure on Brillouin radar telemetry of ocean temperature[J]. Journal of Harbin Institute of Technology, 2008, 40(3): 354-357.

[11] Liang K, Ma Y, Yu Y, et al. Research on simultaneous measurement of ocean temperature and salinity using Brillouin shift and linewidth[J]. Optical Engineering, 2012, 51(6): 6002.

[12] Xu N, Liu Z, Zhang X, et al. Influence of temperature-salinity-depth structure of the upper-ocean on the frequency shift of Brillouin LiDAR[J]. Optics Express, 2021, 29(22): 36442-36452.

[13] 徐宁, 张博, 罗宁宁, 等. 基于受激布里渊散射的海水温度和盐度同步反演[J]. 光学学报, 2022, 42(24): 2429001-2429001-8. XU Ning, ZHANG Bo, LUO Ning-ning, et al. Simultaneous inversion of seawater temperature and salinity based on stimulated Brillouin scattering[J]. Acta Optica Sinica, 2022, 42(24): 2429001-2429001-8.

[14] 贾振安, 徐成, 刘颖刚, 等. 基于布里渊散射光时域分析的温度传感技术研究[J]. 光学与光电技术, 2015, 13(2): 54-57. JIA Zhen-an, XU Cheng, LIU Ying-gang, et al. Research of temperature sensing technology based on Brillouin scattering optical time domain analysis[J]. Optics & Optoelectronic Technology, 2015, 13(2): 54-57.

[15] Fry ES, Emery Y, Quan X, JW Katz. Accuracy limitations on Brillouin lidar measurements of temperature and sound speed in the ocean[J]. Applied Optics, 1997, 36(27): 6887.

[16] McNeil G T. Metrical Fundamentals of Underwater Lens System [J]. Optical Engineering, 1977, 16(2): 128-139.

[17] Richards S D. The effect of temperature, pressure, and salinity on sound attenuation in turbid seawater [J]. The Journal of the Acoustical Society of America, 1998, 103(1): 205-211.

[18] Xu J, Ren X, Gong W, et al. Measurement of the bulk viscosity of liquid by Brillouin scattering[J]. Applied Optics, 2003, 42(33): 6704-6709.

[19] 孙章华. 海浪对布里渊散射方法的影响[D]. 北京: 北京师范大学, 2005. SUN Zhang-hua. Effect of ocean wave on Brillouin scattering method[D]. Beijing: Beijing Normal University, 2005.

[20] 张利明, 鄢楚平, 冯进军, 等. 180 W单频全光纤激光器[J]. 红外与激光工程, 2018, 47(11): 100-108. ZHANG Li-ming, YAN Chu-ping, FENG Jin-jun, et al. 180 W single-frequency all-fiber laser[J]. Infrared and Laser Engineering, 2018, 47(11): 100-108.

[21] Wu D, Song X, Liu Z. Estimation of sounding ability of a brillouin lidar in the East China Sea[J]. Chinese Journal of Oceanology and Limnology, 2001, 19: 193-199.

[22] 史久林. 基于受激布里渊散射的水体特征参数测量及相关基础研究[D]. 武汉: 华中科技大学, 2013. SHI Jiu-lin. Water characteristic parameters measurement and related basic research based on stimulated Brillouin Scattering[D]. Wuhan: Huazhong University of Science and Technology, 2013.

[23] 程都, 张翼飞, 龚礼, 等. WOA18模型在远海地形测量中的运用研究[J]. 海洋测绘, 2021, 41(4): 5-9. CHENG Dou, ZHANG Yi-fei, GONG Li, et al. Study on the application of WOA18 model in remote sea topography survey[J]. Marine Surveying and Mapping, 2021, 41(4): 5-9.

[24] Schorstein K, Popescu A, G?bel M, et al. Remote water temperature measurements based on Brillouin scattering with a frequency doubled pulsed Yb: doped fiber amplifier[J]. Sensors, 2008, 8(9): 5820-5831.

杨玉峰, 上官孟杰, 王波. 基于布里渊激光雷达的海水温度和盐度反演[J]. 光学与光电技术, 2023, 21(6): 0080. YANG Yu-feng, SHANGGUAN Meng-jie, WANG Bo. Inversion of Seawater Temperature and Salinity Based on Brillouin Lidar[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2023, 21(6): 0080.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!