人工晶体学报, 2023, 52 (1): 117, 网络出版: 2023-03-18  

氧分压调控氧化铜薄膜生长及其表面功函数研究

Growth and Surface Work Function of Copper Oxide Thin Films Controlled by Oxygen Partial Pressure
作者单位
宁德师范学院数理学院,宁德 352100
摘要
本文采用反应磁控溅射法制备p型二元铜氧化物半导体薄膜,通过氧气流量调节实现Cu2O、CuO和Cu4O3薄膜的可控生长。所制备薄膜的形貌与结构分别利用扫描电子显微镜、X射线衍射仪以及拉曼光谱进行表征。经紫外可见分光光度计测量可知,Cu2O、CuO和Cu4O3薄膜的带隙分别为2.89 eV、1.55 eV和2.74 eV。为进一步研究Cu2O、CuO和Cu4O3薄膜的表面物理性质,基于Kelvin探针力显微镜(KPFM)技术直接测量了薄膜样品与探针尖端间的接触电位差(VCPD),结果表明Cu2O、CuO和Cu4O3薄膜的表面功函数都随着温度的升高而呈现逐渐减小的趋势。
Abstract
p-type binary copper oxide semiconductor films were prepared by reactive magnetron sputtering method, and the controlled growth of Cu2O, CuO and Cu4O3 thin films was realized by adjusting the oxygen flow rate. The surface morphology of the films was observed by scanning electron microscopy. Meanwhile, the structure of the films was characterized by X-ray diffractometer and Raman spectroscopy. Measured by UV-Vis spectrophotometer, the band gaps of Cu2O, CuO and Cu4O3 thin films are 2.89 eV, 1.55 eV and 2.74 eV, respectively. In order to further study the surface physical properties of Cu2O, CuO and Cu4O3 thin films, Kelvin probe force microscope (KPFM) was used to directly measure the contact potential difference between film and probe tip (VCPD). The results indicate that the surface work functions of Cu2O, CuO and Cu4O3 thin films gradually decrease with the increase of temperature.
参考文献

[1] GU Z Q, LI G J, HUSSAIN N, et al. 3D freestanding CuO@Copper foam as an anode for potassium ion batteries[J]. Applied Surface Science, 2022, 592: 153323.

[2] HUSSAIN I, IQBAL S, HUSSAIN T, et al. Zn-Co-MOF on solution-free CuO nanowires for flexible hybrid energy storage devices[J]. Materials Today Physics, 2022, 23: 100655.

[3] GNANASEKAR T, VALANARASU S, UBAIDULLAH M, et al. Fabrication of Er, Tb doped CuO thin films using nebulizer spray pyrolysis technique for photosensing applications[J]. Optical Materials, 2022, 123: 111954.

[4] PARVATHY T, MUHAMMED SABEER N A, MOHAN N, et al. Effect of dopant gas pressure on the growth of magnetron sputtered CuO thin films for electrical and optical applications[J]. Optical Materials, 2022, 125: 112031.

[5] SHEIKHI S, JALALI F. Hierarchical NiCo2O4/CuO-C nanocomposite derived from copper-based metal organic framework and Ni/Co hydroxides: excellent electrocatalytic activity towards methanol oxidation[J]. Journal of Alloys and Compounds, 2022, 907: 164510.

[6] SAHU K, BISHT A, KHAN S A, et al. Thickness dependent optical, structural, morphological, photocatalytic and catalytic properties of radio frequency magnetron sputtered nanostructured Cu2O-CuO thin films[J]. Ceramics International, 2020, 46(10): 14902-14912.

[7] EKUMA C E, ANISIMOV V I, MORENO J, et al. Electronic structure and spectra of CuO[J]. The European Physical Journal B, 2014, 87(1): 23.

[8] RDL C, SOTTILE F, REINING L. Quasiparticle excitations in the photoemission spectrum of CuO from first principles: a GW study[J]. Physical Review B, 2015, 91(4): 045102.

[9] JIANG Z L, TIAN S L, LAI S Q, et al. Capturing phase evolution during solvothermal synthesis of metastable Cu4O3[J]. Chemistry of Materials, 2016, 28(9): 3080-3089.

[10] LI F, CHANG Q, LI N, et al. Carbon dots-stabilized Cu4O3 for a multi-responsive nanozyme with exceptionally high activity[J]. Chemical Engineering Journal, 2020, 394: 125045.

[11] WANG Y, LANY S, GHANBAJA J, et al. Electronic structures of Cu2O, Cu4O3, and CuO: a joint experimental and theoretical study[J]. Physical Review B, 2016, 94(24): 245418.

[12] KARTHA C V, REHSPRINGER J L, MULLER D, et al. Insights into Cu2O thin film absorber via pulsed laser deposition[J]. Ceramics International, 2022, 48(11): 15274-15281.

[13] PANDA R, PATEL M, THOMAS J, et al. Pulsed laser deposited Cu2O/CuO films as efficient photocatalyst[J]. Thin Solid Films, 2022, 744: 139080.

[14] SIDDARAMAIAH R, KUMAR SINGH YADAV V, PAL A, et al. High-performance CuO nanowire printed devices for visible light sensing and switching characteristics[J]. Materials Letters, 2022, 320: 132300.

[15] UNUTULMAZSOY Y, CANCELLIERI C, LIN L C, et al. Reduction of thermally grown single-phase CuO and Cu2O thin films by in situ time-resolved XRD[J]. Applied Surface Science, 2022, 588: 152896.

[16] YU S Y, GAO Y, CHEN F Z, et al. Fast electrochemical deposition of CuO/Cu2O heterojunction photoelectrode: preparation and application for rapid cathodic photoelectrochemical detection of L-cysteine[J]. Sensors and Actuators B: Chemical, 2019, 290: 312-317.

[17] ROY A, JADHAV H S, CHO M, et al. Electrochemical deposition of self-supported bifunctional copper oxide electrocatalyst for methanol oxidation and oxygen evolution reaction[J]. Journal of Industrial and Engineering Chemistry, 2019, 76: 515-523.

[18] UDDIN J, SHARMIN M, HASAN M N, et al. Influence of Ni doping on the morphological, structural, optical and electrical properties of CuO thin films deposited via a spray pyrolysis[J]. Optical Materials, 2021, 119: 111388.

[19] SHINDE S K, MOHITE S M, KADAM A A, et al. Effect of deposition parameters on spray pyrolysis synthesized CuO nanoparticle thin films for higher supercapacitor performance[J]. Journal of Electroanalytical Chemistry, 2019, 850: 113433.

[20] WU J S, GAO Q, WEI G X, et al. Optical properties and laser-induced breakdown spectroscopy analysis of Al- or Co-doped CuO thin films prepared on glass by radio-frequency magnetron sputtering[J]. Thin Solid Films, 2021, 722: 138572.

[21] JUANG F R, CHENG S J, LU W C, et al. Hydrothermally-synthesized CuO nanoparticles decorated on CuO sputtered thin-film for nitrite sensing application[J]. Thin Solid Films, 2022, 752: 139230.

[22] ALAJLANI Y, PLACIDO F, BARLOW A, et al. Characterisation of Cu2O, Cu4O3, and CuO mixed phase thin films produced by microwave-activated reactive sputtering[J]. Vacuum, 2017, 144: 217-228.

[23] PATWARY M A M, HO C Y, SAITO K, et al. Effect of oxygen flow rate on properties of Cu4O3 thin films fabricated by radio frequency magnetron sputtering[J]. Journal of Applied Physics, 2020, 127(8): 085302.

[24] FU L, ZHOU J, YANG J M, et al. Probing charge transfer under external bias at Cu/SrTiO3 heterojunction[J]. Applied Surface Science, 2022, 592: 153269.

[25] NIKOLENKO A S, STRELCHUK V V, LYTVYN P M, et al. Correlated Kelvin-probe force microscopy, micro-FTIR and micro-Raman analysis of doping anisotropy in multisectorial boron-doped HPHT diamonds[J]. Diamond and Related Materials, 2022, 124: 108927.

[26] SANTOS A J, LACROIX B, DOMNGUEZ M, et al. Controlled grain-size thermochromic VO2 coatings by the fast oxidation of sputtered vanadium or vanadium oxide films deposited at glancing angles[J]. Surfaces and Interfaces, 2021, 27: 101581.

[27] MA J Y, DING J, YAN H J, et al. Temperature-dependent local electrical properties of organic-inorganic halide perovskites: in situ KPFM and c-AFM investigation[J]. ACS Applied Materials & Interfaces, 2019, 11(24): 21627-21633.

[28] DIZAJGHORBANI AGHDAM H, MOEMEN BELLAH S, MALEKFAR R. Surface-enhanced Raman scattering studies of Cu/Cu2O core-shell NPs obtained by laser ablation[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 223: 117379.

[29] WANG Y, GHANBAJA J, SOLDERA F, et al. Tuning the structure and preferred orientation in reactively sputtered copper oxide thin films[J]. Applied Surface Science, 2015, 335: 85-91.

[30] GAN J, VENKATACHALAPATHY V, SVENSSON B G, et al. Influence of target power on properties of CuxO thin films prepared by reactive radio frequency magnetron sputtering[J]. Thin Solid Films, 2015, 594: 250-255.

[31] MELITZ W, SHEN J, KUMMEL A C, et al. Kelvin probe force microscopy and its application[J]. Surface Science Reports, 2011, 66(1): 1-27.

[32] MAHIEU S, DEPLA D. Correlation between electron and negative O- ion emission during reactive sputtering of oxides[J]. Applied Physics Letters, 2007, 90(12): 121117.

杨文宇, 付红. 氧分压调控氧化铜薄膜生长及其表面功函数研究[J]. 人工晶体学报, 2023, 52(1): 117. YANG Wenyu, FU Hong. Growth and Surface Work Function of Copper Oxide Thin Films Controlled by Oxygen Partial Pressure[J]. Journal of Synthetic Crystals, 2023, 52(1): 117.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!