应用激光, 2023, 43 (4): 9, 网络出版: 2023-11-17  

激光功率对汽车用巴氏合金涂层组织及性能的影响

Effect of Laser Power on Microstructure and Properties of Automotive Babbitt Coatings
作者单位
1 濮阳职业技术学院机电与汽车工程学院, 河南 濮阳 457000
2 河南工学院车辆与交通工程学院, 河南 新乡 453000
摘要
为研究激光功率对锡基巴氏合金熔覆层组织和性能的影响, 利用800 W、1 000 W、1 200 W激光功率在20钢表面制备锡基巴氏合金熔覆层。利用金相显微镜(OW)、扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)、摩擦磨损试验机分别对熔覆层的组织形貌、结合区形貌、摩擦学性能进行研究。结果表明, 随着激光功率的增大, 熔池的温度升高, 冷却速率降低, 硬质点颗粒SnSb的颗粒粒径随激光功率的升高逐渐增大。当激光功率较低时, SnSb颗粒尺寸较小, 分布均匀。随着激光功率的升高, SnSb相尺寸增加, 数量减少, 降低了熔覆层的硬度和耐磨性。当激光功率为800 W时, 熔覆层的显微硬度最大, 为35.7 HV, 平均摩擦因数为0.257, 磨损机制为磨粒磨损和表面疲劳磨损。
Abstract
In order to study the effect of laser power on the microstructure and properties of tin-based Babbitt cladding layers, 800 W, 1 000 W and 1 200 W laser powers were used to prepare tin-based babbitt cladding layers on the surface of 20 steel. Phase constituents, microstructure, microhardness, and wear property of the Babbitt coatings with different laser power were investigated using XRD, SEM, microhardness tester, and friction-wear tester, respectively. The results showed that with the increase of laser power, the temperature of the molten pool increases, the cooling rate decreases, and the particle size of the SnSb hard spot particles increases gradually with the increase of laser power. The size of SnSb phase is smaller when the laser power is low, and the distribution is uniform. With the increase of laser power, the size and number of SnSb phase increases, and the hardness and wear resistance of the cladding layer also decrease. The average microhardness of the Babbitt alloy coatings of 800 W laser power is about 35.7 HV, the average friction coefficient is 0.257, and the wear mechanism are abrasive wear and surface fatigue wear.
参考文献

[1] ZEREN A. Embeddability behaviour of tin-based bearing material in dry sliding[J]. Materials & Design, 2007, 28(8): 2344-2350.

[2] MEHDIZADEH M, KHODABAKHSHI F. An investigation into failure analysis of interferingpart of a steam turbine journal bearing[J]. Case Studies in Engineering Failure Analysis, 2014, 2(2): 61-68.

[3] ZHANG D Y, JOHN K L, DONG G N, et al. Tribological properties of Tin-based Babbitt bearing alloy with polyurethane coating under dry and starved lubrication conditions[J]. Tribology International, 2015, 90: 22-31.

[4] ZHANG D Y, ZHAO F F, LI Y, et al. Study on tribological properties of multi-layer surface texture on babbitt alloys surface[J]. Applied Surface Science, 2016, 390: 540-549.

[5] ALCOVER C J, PUKASIEWICZ P R, GERALDO A. Evaluation of microstructure, mechanical and tribological properties of a Babbitt alloy deposited by arc and flame spray processes[J]. Tribology International, 2019, 131: 148-157.

[6] TAO X P, ZHANG S, ZHANG C H, et al. Effect of Fe and Ni contents on microstructure and wear resistance of aluminum bronze coatings on 316 stainless steel by laser cladding[J]. Surface and Coatings Technology, 2018, 342: 76-84.

[7] YAO J H, ZHANG J, WU G L, et al. Microstructure and wear resistance of laser cladded composite coatings prepared from pre-alloyed WC-NiCrMo powder with different laser spots[J]. Optics & Laser Technology, 2018, 101: 520-530.

[8] DENG P S, YAO C W, FENG K, et al.Enhanced wear resistance of laser cladded graphene nanoplatelets reinforced Inconel 625 superalloy composite coating[J]. Surface and Coatings Technology, 2018, 335: 334-344.

[9] ZHANG Z H, WANG X, ZHANG Q Q, et al. Fabrication of Fe-based composite coatings reinforced by TiC particles and its microstructure and wear resistance of 40Cr gear steel by low energy pulsed laser cladding[J]. Optics & Laser Technology, 2019, 119: 105622.

[10] LU J Z, CAO J, LU H F, et al. Wear properties and microstructural analyses of Fe-based coatings with various WC contents on H13 die steel by laser cladding[J]. Surface and Coatings Technology, 2019, 369: 228-237.

[11] CHEN Z F, YAN H, ZHANG P L, et al. Microstructural evolution and wear behaviors of laser-clad Stellite 6/NbC/h-BN self-lubricating coatings[J]. Surface and Coatings Technology, 2019, 372: 218-228.

[12] MATTHEW T R, PAUL A C, ZHANG Z, et al. Liquation and post-weld heat treatment cracking in rene 80 laser repair welds[J]. Journal of Materials Processing Technology, 2012, 212(1): 188-197.

[13] 曹金龙, 杨学锋, 王守仁, 等. 45钢表面激光熔覆Ni60-TiC陶瓷涂层的耐磨耐蚀性能[J]. 稀有金属材料与工程, 2020, 49(2): 611-617.

[14] 郝云波, 赵凯, 杨萍, 等. 激光熔覆锡基巴氏合金微观组织和力学性能[J]. 中国有色金属学报, 2018, 28(10): 2016-2023.

[15] WENG F, YU H J, CHEN C Z, et al. Microstructures and wear properties of laser cladding Co-based composite coatings on Ti-6Al-4V[J]. Materials & Design, 2015, 80: 174-181.

[16] ZHU L J, LIU Y H, LI Z W, et al. Microstructure and properties of Cu-Ti-Ni composite coatings on gray cast iron fabricated by laser cladding[J]. Optics & Laser Technology, 2020, 122: 105879.

[17] AGHILI S E, SHAMANIAN M. Investigation of powder fed laser cladding of NiCr-chromium carbides single-tracks on titanium aluminide substrate[J]. Optics & Laser Technology, 2019, 119: 105652.

[18] DAI X Q, ZHOU S F, WANG M F, et al. Microstructure evolution of phase separated Fe-Cu-Cr-C composite coatings by laser induction hybrid cladding[J]. Surface and Coatings Technology, 2017, 324: 518-525.

[19] ZHOU F M, ZHANG Q Y, SHI M X, et al. The effect of TIG arc brazing current on interfacial structure and bonding strength of tin-based babbit[J]. Journal of Adhesion Science and Technology, 2017, 31(21): 2312-2322.

朱杰, 崔志华, 王强. 激光功率对汽车用巴氏合金涂层组织及性能的影响[J]. 应用激光, 2023, 43(4): 9. Zhu Jie, Cui Zhihua, Wang Qiang. Effect of Laser Power on Microstructure and Properties of Automotive Babbitt Coatings[J]. APPLIED LASER, 2023, 43(4): 9.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!