激光与光电子学进展, 2016, 53 (6): 062601, 网络出版: 2016-06-06  

轨道电子的三重动量相关:氖原子的从头计算

Triple-Momentum-Correlation of Orbital Electrons: Ab Initio Experiment on Ne Atom
作者单位
天津大学精密仪器与光电子工程学院光电信息技术教育部重点实验室, 天津 300072
摘要
通过求解密度泛函理论中的含时科恩-沈(TDKS)方程,对Ne原子光电离过程进行了数值模拟,发现了在高强度极紫外(XUV)激光脉冲作用下的三重动量相关(TMC)现象。计算结果显示了不同轨道电子具有不同电离特性,发现对于高强度XUV激光脉冲,Ne原子p轨道电子的电离主要发生在沿着轨道纵向的方向上。通过计算各轨道电子的动量分量,发现轨道电子的平行动量相互关联,垂直动量也相互关联,但平行动量和垂直动量之间并不关联。这些相互关联的关系可以由轨道形状、轨道朝向和激光偏振来解释。模拟结果显示了内层轨道电子也可以发生显著电离现象。
Abstract
By deploying the time-dependent Kohn-Sham (TDKS) scheme of the density functional theory, numerical simulations are performed on the photoionization of Ne atom and a triple-momentum-correlation (TMC) affected by intense extreme ultra-violet (XUV) laser pulses is found. The simulation results show the different characteristics of ionization from different orbital electrons. For strong XUV laser intensity, ionization undergoes mainly along the orbital direction (longitudinal direction) for the p-type orbits in Ne atom. By simulating the momenta components of different orbital electrons, it is unveiled that the parallel momenta of the orbital electrons are mutually correlated, and the perpendicular momenta are also mutually correlated, but not between them. These correlation relations are deciphered in the interplay between the orbital geometry, orbital orientation and laser polarization. The simulation results also show a profound ionization of the inner orbital electrons.
参考文献

[1] Parr R G, Yang W. Density-functional theory of atoms and molecules[M]. Oxford: Oxford University Press, 1989.

[2] Marques M A L, Maitra N T, Nogueira F M S, et al.. Fundamentals of time-dependent density functional theory[M]. Berlin: Springer-Verlag Berlin Heidelberg, 2012.

[3] Marques M A L, Ullrich C, Nogueria F, et al.. Time-dependent density functional theory[M]. Berlin: Springer-Verlag Berlin Heidelberg, 2006.

[4] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): A1133-A1138.

[5] Maitra N T, Faassen Mvan. Improved exchange-correlation potential for polarizability and dissociation in density functional theory[J]. The Journal of Chemical Physics, 2007, 126(19): 191106.

[6] Heslar J, Telnov D A, Chu S I. Time-dependent density-functional theory with optimized effective potential and self-interaction correction and derivative discontinuity for the treatment of double ionization of He and Be atoms in intense laser fields[J]. Physical Review A, 2013, 87(5): 052513.

[7] R van Leeuwen, E J Baerends. Exchange-correlation potential with correct asymptotic behavior[J]. Physical Review A, 1994, 49(4): 2421-2431.

[8] Rey H F, Hart H W van der. Probing spin-orbit-interaction-induced electron dynamics in the carbon atom by multiphoton ionization[J]. Physical Review A, 2014, 90(3): 033402.

[9] Penka E F, Couture-Bienvenue E, Bandrauk A D. Lonization and harmonic generation in CO and H2CO and their cations with ultrashort intense laser pulses with time-dependent density-functional theory[J]. Physical Review A, 2014, 89(2): 023414.

[10] Chen H, Tagliamonti V, Gibson G N. Enhanced ionization of an inner orbital of I2 by strong laser fields[J]. Physical Review A, 2012, 86(5): 051403.

[11] 余本海, 李盈傧, 李方涛. 少光周期的椭圆偏振激光脉冲驱动的氙原子非次序双电离[J]. 光学学报, 2013, 33(6): 0602001.

    Yu Benhai, Li Yingbin, Li Fangtao. Nonsequential double ionization of Xe atoms by elliptically polarized few-cycle laser pulses[J]. Acta Optica Sinica, 2013, 33(6): 0602001.

[12] 马学伟, 马小东, 戴长建. 锂原子的光激发和电场电离[J]. 光学学报, 2015, 35(6): 0602004.

    Ma Xuewei, Ma Xiaodong, Dai Changjian. Electric field ionization of lithium atom[J]. Acta Optica Sinica, 2015, 35(6): 0602004.

[13] Jia X Y, Hao X L, Fan D H, et al.. S-matrix and semiclassical study of electron-electron correlation in strong-field nonsequential double ionization of Ne[J]. Physical Review A, 2013, 88(3): 033402.

[14] Zhao Z X, Chang Z, Tong X M, et al.. Circularly-polarized laser-assisted photoionization spectra of argon for attosecond pulse measurements[J]. Optics Express, 2005, 13(6): 1966-1977.

[15] Nikolopoulos L A A. Time-dependent theory of angular correlations in sequential double ionization[J]. Physical Review Letters, 2013, 111(9): 093001.

[16] Bandrauk A D, Shen H. Exponential split operator methods for solving coupled time-dependent Schrdinger equations[J]. The Journal of Chemical Physics, 1993, 99(2): 1185-1193.

[17] Taira T, Furutani H, Guo C, et al.. Focus issue introduction: Laser ignition conference[J]. Optics Express, 2014, 22(S2): A564-A566.

[18] Zhao K, Zhang G, Hill W T. Image labeling: A graphical interface to correlation in multiparticle ejection dynamics[J]. Optics Express, 2001, 9(1): 42-48.

[19] Sun X, Li M, Yu J, et al.. Calibration of the initial longitudinal momentum spread of tunneling ionization[J]. Physical Review A, 2014, 89(4): 045402.

[20] Hart H W van der, Morgan R. Population trapping in bound states during IR-assisted ultrafast photoionization of Ne+[J]. Physical Review A, 2014, 90(1): 013424.

[21] Ishikawa K L, Kazansky A K, Kabachnik N M, et al.. Theoretical study of pulse delay effects in the photoelectron angular distribution of near-threshold EUV+ IR two-photon ionization of atoms[J]. Physical Review A, 2014, 90(2): 023408.

[22] Kheifets A S, Ivanov I A. Transverse-electron-momentum distribution in pump-probe sequential double ionization[J]. Physical Review A, 2014, 90(3): 033404.

[23] Tolstikhina I Y, Morishita T, Tolstikhin O I. Application of the many-electron weak-field asymptotic theory of tunneling ionization to atoms[J]. Physical Review A, 2014, 90(5): 053413.

[24] Zhao Q, Morrison R C, Parr R G. From electron densities to Kohn-Sham kinetic energies, orbital energies, exchange-correlation potentials, and exchange-correlation energies[J]. Physical Review A, 1994, 50(3): 2138.

[25] Kornev A S, Zon B A. Keldysh theory of tunnel ionization of an atom in a few-cycle laser pulse field[J]. Physical Review A, 2012, 85(3): 035402.

[26] Becker W, Liu X J, Ho P J, et al.. Theories of photoelectron correlation in laser-driven multiple atomic ionization[J]. Reviews of Modern Physics, 2012, 84(3): 1011.

[27] Peters M, Nguyen-Dang T T, Charron E, et al.. Laser-induced electron diffraction: A tool for molecular orbital imaging[J]. Physical Review A, 2012, 85(5): 053417.

[28] Sun X, Li M, Ye D, et al.. Mechanisms of strong-field double ionization of Xe[J]. Physical Review Letters, 2014, 113(10): 103001.

[29] Palacios A, Rescigno T N, McCurdy C W. Two-electron time-delay interference in atomic double ionization by attosecond pulses[J]. Physical Review Letters, 2009, 103(25): 253001.

[30] 董程, 沈礼, 杨金红, 等. 用速度影像法研究Eu原子4f76p1/28s自电离态的弹射电子角分布[J]. 光学学报, 2014, 34(7): 0702001.

    Dong Cheng, Shen Li, Yang Jinhong, et al.. Angular distribution of ejected electrons from Eu 4f76p1/28s auto-ionizing state studied by velocity mapping imaging technique[J]. Acta Optica Sinica, 2014, 34(7): 0702001.

[31] Zwan E V van der, Lein M. Molecular imaging using high-order harmonic generation and above-threshold ionization[J]. Physical Review Letters, 2012, 108(4): 043004.

[32] Klaiber M, Hatsagortsyan K Z, Keitel C H. Tunneling dynamics in multiphoton ionization and attoclock calibration[J]. Physical Review Letters, 2015, 114(8): 083001.

胡沺, 丁欣, 王与烨, 张贵忠, 姚建铨. 轨道电子的三重动量相关:氖原子的从头计算[J]. 激光与光电子学进展, 2016, 53(6): 062601. Hu Tian, Ding Xin, Wang Yuye, Zhang Guizhong, Yao Jianquan. Triple-Momentum-Correlation of Orbital Electrons: Ab Initio Experiment on Ne Atom[J]. Laser & Optoelectronics Progress, 2016, 53(6): 062601.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!