中国激光, 2024, 51 (8): 0805002, 网络出版: 2024-03-29  

相干涡旋和刃型位错在海洋湍流中的相互作用【增强内容出版】

Interaction Between Coherence Vortex and Edge Dislocation in Oceanic Turbulence
作者单位
1 成都师范学院物理与工程技术学院,四川 成都 611130
2 宜宾学院四川省计算物理高校重点实验室,四川 宜宾 644000
摘要
类比相干光束中刃型位错概念,提出一种新的相干奇点——相干刃型位错。对高斯-谢尔模光束携带的相干涡旋和刃型位错在海洋湍流中的相互作用进行研究。基于扩展的惠更斯-菲涅耳原理,得到了该光束在海洋湍流环境下的交叉谱密度表达式,并将其用于研究相干涡旋和刃型位错的相互作用。研究发现:相干刃型位错在相干涡旋的作用下发生断裂并转化成相干涡旋。在光束传输过程中,光场中有单个或成对相干涡旋的产生或湮灭现象发生。二者之间的作用特点不仅与传输距离有关,还受光束初始参数和海洋湍流参数的影响。二者之间的作用规律与自由空间光涡旋和刃型位错的作用规律不同。
Abstract
Objective

It is well known that there are two typical phase singularities in the fully coherent beams, i.e., the optical vortex and the edge dislocation. Although much of research has explored properties of the fully coherent beams, there are practical uses of the partially coherent beams because they are more resistant to degradation with propagation through turbulent medium than the former. The propagation of the partially coherent beams carrying coherence singularities in oceanic turbulence has attracted much attention due to its application in underwater wireless communication. It is interesting to ask how oceanic turbulence can affect the interaction of coherence vortex and edge dislocation carried by partially coherent beams. Because the Gaussian Schell-model beam is a typical example of partially coherent beams, the interaction of the coherence vortex and edge dislocation carried by the Gaussian Schell-model beams in oceanic turbulence is studied in detail.

Mathods

By making an analogy with definition of the edge dislocation in coherent beams, the coherence edge dislocation is shown to be in existence in partially coherent beams. Based on the extended Huygens-Fresnel principle, the analytical expression of the cross-spectral density for the Gaussian Schell-model beams carrying the coherence vortex and edge dislocation propagating through oceanic turbulence is derived, which is used to study the interaction of them in oceanic turbulence. The position of correlation singularities of the partially coherent beams at the z plane can be determined by the curves of the real component and imaginary component, as well as phase distribution of the spectral degree of coherence of the Gaussian Schell-model beams.

Results and Discussions

There should exist another type of coherence singularities, namely the coherence edge dislocation with π-phase jump located along a line in the transverse plane of the correlation function, which is different from the edge dislocation in fully coherent beams (Fig.1), because the transverse edge dislocation with π-phase shift is located along a line in the transverse plane. The coherence edge dislocation is split into two optical vortices by the coherence vortex if the edge dislocation is off-axis, while it is broken into one optical vortex as it is on-axis. The result is similar to the interaction of the phase vortex and edge dislocation in free space. The coherence edge dislocation is translated into one coherence vortex or two vortices with propagation of the beams in oceanic turbulence (Fig.3). The total topological charge is not conserved with propagation of the initial beams with the coherence vortex and off-axis edge dislocation in oceanic turbulence, because appearance or disappearance of a coherent vortex may take place with propagation. The result is different from the interaction of a phase vortex and an off-axis edge dislocation in free space, because the total topological charge is conserved in the latter case. The evolution of the coherence singularities speeds up with increasing the value of the rate of dissipation of mean-square temperature χT and the relative strength of salinity and temperature fluctuationω, as well as decreasing the rate of dissipation of turbulent kinetic energy per unit mass ε (Fig.4). The physical reason can be explained by the theoretical expression of the strength of oceanic turbulence. It is seen that the strength of the oceanic turbulence becomes stronger with increasing the rate of dissipation of mean-square temperature and the relative strength of salinity and temperature fluctuation, as well as decreasing the rate of dissipation of turbulent kinetic energy per unit mass. When the initial beam parameters, such as the spatial correlation length δ0, the off-axis distance and the slope of the edge dislocation of the coherence edge dislocation change, the changes of positions and number of coherence singularities in the fields take place with propagation of the beams. It is found that not only creation and annihilation of a pair of coherent vortices, but also appearance and disappearance of a vortex take place with varying the initial beams parameters (Figs.5?7).

Conclusions

In the present study, we have firstly introduced the definition of the coherence edge dislocation in accordance with previous researches. Then, the analytical expression of the cross-spectral density for the Gaussian Schell-model beams carrying the coherence vortex and edge dislocation propagating through oceanic turbulence is derived, which is then used to study the interaction of them in oceanic turbulence. It has been shown that the interaction depends on propagation distance, oceanic turbulence parameters, and the beam parameters such as the spatial correlation length and the slope and off-axis distance of the coherent edge dislocation. The creation and annihilation of pairs of coherence vortices occur and the appearance and disappearance of a coherent vortex may also take place by changing these influencing factors. The total topological charge is not generally conserved with propagation of the initial beams. Furthermore, the stronger the oceanic turbulence is, the faster the decrease of the distance for the conservation of the topological charges is.

1 引言

奇点光学以前主要关注相干光束中强度为0而相位不确定的点或者线,光场中的这些点或者线称为相位奇点,其中的这类点称为光涡旋,这类线称为刃型位错1-2。何德(He)等3研究了高斯余弦光束携带的光涡旋和刃型位错在自由空间的相互作用,发现光束在传输过程中拓扑电荷一般不守恒。尽管过去的多数研究关注相干光束的传输特性,但是部分相干光因在通过湍流介质时不易退化而具有实际应用价值4-6。在部分相干光场中强度一般不等于0,但是光束中一对空间点的光谱相干度(SDC)可能存在零点,表明光束的相关函数可能拥有光学奇点(也叫相关奇点)。这类相干奇点称为相干涡旋,它被定义为垂直于光束传输方向的横平面内一对SDC为0而相位不确定的空间点7。根据相关研究文献37-8,类似于相位奇点中的刃型位错奇点,我们认为部分相干光中存在着另一类相干奇点——相干刃型位错,将其定义为在垂直于传输方向的横平面内一对SDC为0的空间点的线,并且越过该线时相位发生π突变。

近年来,携带相干涡旋的光束通过海洋湍流的传输的研究由于在光通信方面的应用引起了广泛关注9-15。研究者们发现:涡旋光束通过海洋湍流传输过程中,相干涡旋的数量和位置会发生变化813。现在的问题是,部分相干光束携带的相干光涡旋和刃型位错在海洋湍流中的相互作用是怎样的?高斯-谢尔模(GSM)光束是典型的部分相干光束16。本文以GSM光束为例,采用扩展的惠更斯-菲涅耳原理,推导出携带相干涡旋和刃型位错的GSM光束在海洋湍流中的交叉谱密度传输表达式,数值模拟和分析了海洋湍流中相干涡旋和刃型位错的相互作用特点。

2 理论模型

2.1 携带相干刃型位错的GSM光束

完全相干光束波前可能含有相位奇点,其中典型的有光涡旋和刃型位错。在这些奇点处,光束的相位不确定而光强为01。考虑携带刃型位错的高斯光束在初始平面z=0处的光场分布17

Eρ,0=aρx-ρy+bw0exp-ρx2+ρy2w02

式中:ρ=(ρxρy)为z平面上点的位矢;w0为背景光束的束腰宽度;ab分别为刃型位错的斜率和离轴距离。

携带相位奇点的完全相干光束在z平面上相位奇点的位置可以由光场的相位图来确定,也可以由下列方程确定2

ReEρ=0ImEρ=0

部分相干光束因其空间和时间的随机起伏性,必须采用交叉谱密度Wρ1ρ2)描述光场中ρ1ρ2两点的相关性。部分相干光的SDC定义为18

μρ1,ρ2=Wρ1,ρ2Iρ1Iρ2

式中:Iρ1)和Iρ2)分别为光束在ρ1ρ2两点的光强。

部分相干光束交叉谱密度相位的可分性决定了光谱相干度的相位奇点性质。在Iρ1)≠0和Iρ2)≠0的条件下,光谱相干度的相位奇点称为部分相干光束的相干奇点。在z平面上相干奇点的位置可以由光谱相干度的相位分布来确定,也可由下列方程确定8

Reμρ1,ρ2=0Imμρ1,ρ2=0

与携带相干涡旋的部分相干光束模型类似,通过引入谢尔相关因子19,携带相干刃型位错的GSM光束在初始平面处的交叉谱密度表示为

W0ρ1,ρ2=aρ1x+b-ρ1yw0aρ2x+b-ρ2yw0·exp-ρ12+ρ22w02-ρ1-ρ222δ02

式中:δ0表示空间相关长度。

满足相干度定义式条件Iρ1)≠0和Iρ2)≠0时,部分相干光束SDC的相位奇点称为相干奇点。因此下面在讨论相干奇点演化时,采用SDC实部和虚部为0图像或相位分布图来描述奇点分布。利用式(1)~式(7)图1描述了携带刃型位错的高斯光束和携带相干刃型位错的GSM光束的SDC的Re[μ]=0和Im[μ]=0曲线,对应的λ=0.532 μm,δ0=2.5 cm,w0=3 cm,a=1,b=0.1w0。由图1(a)携带刃型位错的高斯光束Re[E]=0和Im[E]=0曲线可见,光场中存在一条斜率为a、离轴距离为b的刃型位错,沿该条线电场强度的实部和虚部均为0。由图1(b)携带相干刃型位错的GSM光束的SDC的Re[μ]=0和Im[μ]=0曲线可见,其中存在一条斜率为a、离轴距离为b的相干刃型位错。与刃型位错属于完全相干光波的相位奇点不同,部分相干光的相干刃型位错属于SDC的相位奇点,沿该条线SDC的实部和虚部均为0。

图 1. 携带刃型位错的高斯光束的Re[E]=0和Im[E]=0曲线和携带相干刃型位错的GSM光束的SDC的Re[μ]=0和Im[μ]=0曲线。(a)高斯光束的Re[E]=0和Im[E]=0曲线;(b)GSM光束的SDC的Re[μ]=0和Im[μ]=0曲线

Fig. 1. Curves of Re[E]=0 and Im[E]=0 of Gaussian beam with edge dislocation and Re[μ]=0 and Im[μ]=0 of SDC for GSM beam with coherence edge dislocation. (a) Curve of Re[E]=0 and Im[E]=0 of Gaussian beam; (b) curve of Re[μ]=0 and Im[μ]=0 of SDC for GSM beam

下载图片 查看所有图片

2.2 携带相干涡旋和刃型位错的GSM光束

寄居于高斯光束的光涡旋和刃型位错在初始平面的光场分布为3

Eρ,0=ρx+iρyaρx-ρy+bw02exp-ρx2+ρy2w02

式(8)可以看出:该光束在初始平面存在着相位奇点,其中光涡旋位于坐标原点(0,0)位置处,而刃型位错的斜率为a为,离轴距离为b

类似于携带相干刃型位错的GSM光束表达式(7),携带相干光涡旋和刃型位错的GSM光束在初始平面处的交叉谱密度表示为

W0ρ1,ρ2=ρ1x+iρ1yaρ1x+b-ρ1yw02ρ2x+iρ2yaρ2x+b-ρ2yw02exp-ρ12+ρ22w02-ρ1-ρ222δ02

由式(4)~式(6)可知,相干奇点可以通过先固定空间观察点ρ2,然后寻找对应于SDC为0的点ρ1的位置来确定。因为相干奇点位置取决于观察点的位置选取,这类奇点被称为非定域奇点20。利用式(4)~式(6)式(9),携带相干光涡旋和刃型位错的GSM光束SDC的Re[μ]=0和Im[μ]=0曲线及相位分布如图2所示,其中ρ2x=1 cm,ρ2y=1.5 cm,其他参数与图1相同。正的(或负的)相干涡旋基于Freund21提出的符号法则来判定,并在图中采用黑色(或白色)圆点来表示。由图2可以看出,在光场中除了带拓扑电荷m=+1的相干涡旋位于原点A(0,0)之外,还存在一条斜率为a、离轴距离为b的相干刃型位错。

图 2. 携带相干涡旋和刃型位错的GSM光束的SDC的Re[μ]=0和Im[μ]=0曲线及相位分布。(a)Re[μ]=0和Im[μ]=0曲线;(b)相位分布

Fig. 2. Curves of Re[μ]=0 and Im[μ]=0 and phase distribution of SDC for GSM beam with coherence vortex and edge dislocation. (a) Curves of Re[μ]=0 and Im[μ]=0; (b) phase distribution

下载图片 查看所有图片

2.3 携带相干涡旋和刃型位错的GSM光束在海洋湍流中传输

基于扩展的惠更斯-菲涅耳原理,部分相干光通过海洋湍流的交叉谱密度表达式为

Wzρ1,ρ2=k2πz2d2ρ10d2ρ20W0ρ10,ρ20×expρ1-ρ102-ρ2-ρ202×expψ*ρ1,ρ10+ψ*ρ2,ρ20

式中:k为波数,k=2π/λψ为复数相位的随机部分;*表示复共轭;表示海洋湍流的统计平均值,表示为22

expψ*ρ1,ρ10+ψ*ρ2,ρ20=exp-k2zTOρ1-ρ22+ρ1-ρ2ρ10-ρ20+ρ10-ρ202

式中:TO为海洋湍流的强度,表达式为923

TO=1.2765×10-8ω-2ε-1/3η-1/3χT47.5708-17.6701ω+6.78335ω2

式中:ω为盐度和温度波动的相对强度;ε为单位质量湍流动能的耗散率;η为柯尔莫哥洛夫湍流微尺度;χT为均方温度耗散速率。

式(12)可以看出,随着χTω的增加或者ε的减少,海洋湍流的强度变大。

采用积分公式24

xnexp-px2+2qxdx=n!πpqpnexpq2pk=0n/21n-2k!k!p4q2k

把GSM光束在初始平面处的交叉谱密度表达式(9)代入式(10),并经过繁杂的积分运算,最后得到z>0平面处光束的交叉谱密度表达式为

Wzρ1,ρ2=k2M1N1+M2N2-M3N34u1u20w04z2+k2D2aN4-N54u13u20w04z2×expv1x2+v1y2u1+v2x02+v2y02u20+ρ12-ρ22-k2zTOρ1-ρ22

式中:

M1=av1x2-iv1y2-1-iav1xv1yu12+bv1x+iv1yu1+a-i2u1M2=2aDv1xu12-1-iaDv1yu12+bDu1M3=1-iaDv1xu12+2iDv1yu12-ibDu1N1=B1v2x0+ibv2y0u20+aA1-iA2N2=ibv2x0v2y0u202-iA2v2x0u20+A1B1+aA3N3=bv2x0v2y0u202+aA1v2y0u20+A2B2-iA4N4=A-4bA2v2x0+2ibA1v2y0u20-2i+aA1A2+A3C2+aA5N5=2ibA2v2x0+aA3+bA1v2y0u20+2ia-1A1A2-A4C1+A6A1=v2x02u202+12u20A2=v2y02u202+12u20A3=v2x03u203+3v2x02u202A4=v2y03u203+3v2y02u202A5=v2x04u204+34u202+3v2x02u203A6=v2y04u204+34u202+3v2y02u203B1=b+ia-1v2y0u20B2=ib+ia-1v2x0u20C1=2i+av2x0u20+bC2=2ia-1v2y0u20+bD=12δ02+k2zTu1=1w02+12δ02+k2zTO-1u2=1w02+12δ02+k2zTO+1v2x=ρ2x+12k2zTOρ1x-ρ2xv2y=ρ2y+12k2zTOρ1y-ρ2yu20=u2-D2u12v2x0=v2x+v1x0Du12v2y0=v2y+v1y0Du12v1x=-ρ1x-12k2zTOρ1x-ρ2xv1y=ρ1y-12k2zTOρ1y-ρ2y

式(14)可以看出,在平面z>0处GSM光束的SDC不仅与传输距离有关,而且与光束初始参数δ0ab以及湍流参数εχTω有关。

3 海洋湍流中相干涡旋和刃型位错相互作用

利用式(4)~式(6)式(14),对寄居于GSM光束的相干涡旋和刃型位错在海洋湍流环境下的相互作用进行数值模拟和分析。海水最弱的吸收峰在蓝绿波段,典型值为532 nm,因此水下通信采用蓝绿波长范围内波段,此波段海水衰减较小,在合适条件下可以进行几百米级别的通信25-26。本研究采用的激光波长在蓝绿波段,讨论的传输距离限制在z=200 m范围内,激光衰减不显著。

3.1 相干涡旋对相干刃型位错的分裂

为了查明相干刃型位错的离轴距离对其被相干涡旋分裂的影响,图3给出了初始携带相干涡旋和刃型位错的GSM光束传输到z=5 m处的SDC相位分布,图中其他计算参数与图2相同。当相干刃型位错的离轴距离不等于0时,例如b=0.1w0,如图3(a)所示,相干刃型位错断裂成一对带有相反拓扑电荷m=±1的相干涡旋B和C,因此光场中出现的相干涡旋总的拓扑电荷不变。但是,当相干刃型位错的离轴距离取值b=0时,如图3(b)所示,初始光束携带的相干刃型位错则演变为一个带拓扑电荷m=+1的相干涡旋B。此时光场中总的拓扑电荷为+2,并不等于初始光场中相干涡旋的拓扑电荷+1。因此,在传输过程中,光束携带的相干涡旋总的拓扑电荷可能不守恒。该结果与自由空间情形下光涡旋和刃型位错相互作用情形类似,尽管后者属于完全相干光情形下的相位奇点3

图 3. 携带相干涡旋和刃型位错的GSM光束传输到z=5 m处的SDC相位分布。(a)b=0.1w0;(b)b=0

Fig. 3. Contour lines of phase of SDC for GSM beam with coherence vortex and edge dislocation propagating to z=5 m. (a) b=0.1w0; (b) b=0

下载图片 查看所有图片

3.2 湍流参数的影响

为了查明湍流参数对相干涡旋和刃型位错作用的影响,图4给出了湍流参数χTεω取不同值时GSM光束在海洋湍流传输中相干涡旋的位置和数目,其中柯尔莫哥洛夫湍流微尺度η=10-2 m保持不变,初始位置处相干刃型位错的离轴距离不等于0(也被称为离轴相干刃型位错),其他计算参数与图3(a)相同。由χT=10-10 K2/s的图4(a)可以看出,当携带相干涡旋和刃型位错的GSM光束开始传输时,相干涡旋A慢慢离开其z=0平面处的初始位置,而相干刃型位错则分裂成一对带有相反拓扑电荷m=±1的相干涡旋B和C。当光束传输到z=42 m时,带拓扑电荷m=+1的新的相干涡旋D出现在光场中。因此,与初始光场相比,GSM光束在海洋湍流中传输时,相干涡旋总的拓扑电荷并不守恒。在光束传输到z=52 m时,另一个带拓扑电荷m=-1的相干涡旋E在光场中出现。随着传输距离的增加,相干涡旋A和B由于带相反拓扑电荷而相互吸引和靠近,并在光束传输到z=72 m时湮灭。在光束传输到z=84 m时,光场中出现带拓扑电荷m=+1的新的相干涡旋F。随后,相干涡旋F随着传输距离的增加逐渐接近相干涡旋E,直到光束传输到z=90 m时二者结合而湮灭。最后,相干涡旋C和D在光束传输到z=185 m和z=191 m时先后移向无穷远处。但是,当光束传输到z=192.4 m和z=192.5 m时,新的相干涡旋E和F先后出现在光场中。因此,携带相干涡旋和刃型位错的GSM光束在海洋湍流传输中,不仅可能有成对相干涡旋的产生和湮灭,也可能有单个相干涡旋的产生和消失,拓扑电荷并不守恒。该结果与自由空间情形下完全相干光携带的光涡旋和离轴刃型位错相互作用情形不同,因为后者在光束传输过程中光涡旋总的拓扑电荷守恒3

图 4. 湍流参数χTεω取不同值时GSM光束在海洋湍流传输中相干涡旋的位置。(a)χT=10-10 K2/s,ε=10-4 m2/s3ω=-5;(b)χT=10-9 K2/s,ε=10-4 m2/s3ω=-5;(c)χT=10-10 K2/s,ε=10-5 m2/s3ω=-5;(d)χT=10-10 K2/s,ε=10-4 m2/s3ω=-1

Fig. 4. Position of coherent vortices of GSM beam propagating through oceanic turbulence for different values of χT, ε and ω. (a) χT=10-10 K2/s, ε=10-4 m2/s3, and ω=-5; (b) χT=10-9 K2/s, ε=10-4 m2/s3, and ω=-5; (c) χT=10-10 K2/s, ε=10-5 m2/s3, and ω=-5; (d) χT=10-10 K2/s, ε=10-4 m2/s3, and ω=-1

下载图片 查看所有图片

χT=10-9 K2/s时的图4(b)可以看出,GSM光束携带的相干涡旋和刃型位错随光束传输的演化过程与χT=10-10 K2/s时的图4(a)相似。但是,随着参数χT的增加,相干涡旋和刃型位错的演化速度更快。例如,在χT=10-10 K2/s的图4(a)情形下,跟初始光场相干涡旋的拓扑电荷相比,GSM光束出现的相干涡旋总的拓扑电荷守恒距离为42 m;而在χT=10-9 K2/s的图4(b)情形下,GSM光束的相干涡旋总的拓扑电荷守恒距离只有4.2 m。这可以通过海洋湍流的强度表达式(12)予以解释。海洋湍流的强度To正比于海水均方温度耗散速率χT,因此χT越大,GSM光束中相干涡旋的守恒距离越小。

ε=10-5 m2/s3时的图4(c)可以看出,GSM光束携带的相干涡旋和刃型位错随光束传输的演化过程与ε=10-4 m2/s3时的图4(a)相似。但是,随着参数ε的减少,相干涡旋和刃型位错的演化速度更快。例如,ε=10-5 m2/s3时的图4(c)光束拓扑电荷守恒距离18.8 m,小于ε=10-4 m2/s3时的图4(a)中的42 m。这可以通过海洋湍流的强度表达式(12)予以解释。单位质量湍流动能耗散率ε越小,海洋湍流的强度越大,从而GSM光束中相干涡旋的守恒距离越小。

与海水均方温度耗散速率和单位质量湍流动能耗散率的影响不同,海水盐度和温度波动的相对强度ω增加时,GSM光束携带的相干涡旋和刃型位错演化速度加快。例如,ω=-1时的图4(d)拓扑电荷守恒距离6.9 m,小于ω=-5时的图4(a)中的42 m。原因在于:根据海洋湍流强度表达式(12),海水盐度和温度波动的相对强度ω越大,海洋湍流越强,海洋湍流对相干涡旋和刃型位错相互作用的影响越大。

3.3 光束初始参数的影响

为了查明初始相干刃型位错离轴距离对相干涡旋和刃型位错作用的影响,图5给出了初始相干刃型位错不同离轴距离情形下携带相干涡旋和刃型位错的GSM光束在z=100 m处的SDC相位分布。由b=0的图5(a)可见,光场中出现了相干涡旋A+,B-,C+,D-,E+和F-(这里的符号+或-表示相干涡旋携带的拓扑电荷m=+1或-1)。随着初始相干刃型位错离轴距离的增加,相干涡旋C+逐渐远离其他相干涡旋,并在离轴距离增加到b=0.31w0时[图5(b)]从光场中消失。但是,当离轴距离增加到0.33w0时[图5(c)],光场中出现一对新的相干涡旋G+和G-。相干涡旋F-在离轴距离增加到b=0.51w0时[图5(d)]从光场中消失,但新的相干涡旋G+和G-在离轴距离增加到0.745w0时[图5(e)]出现。之后,随着离轴距离的增加相干涡旋D-和E+逐渐接近,并在b=0.99w0时[图5(f)]二者结合而湮灭。图5表明:当初始相干刃型位错离轴距离改变的时候,在光束传输到一定距离的横向平面上不仅可能有单个相干涡旋的产生和消失,也可能有带相反拓扑电荷的成对相干涡旋的产生和湮灭现象发生。

图 5. 海洋湍流中携带相干涡旋和不同离轴距离的刃型位错的GSM光束的SDC相位分布。(a)b=0;(b)b=0.31w0;(c)b=0.33w0;(d)b=0.51w0;(e)b=0.745w0;(f)b=0.99w0

Fig. 5. Contour lines of phase of SDC for GSM beam with coherence vortex and edge dislocation in oceanic turbulence for different values of off-axis distance. (a) b=0; (b) b=0.31w0; (c) b=0.33w0; (d) b=0.51w0; (e) b=0.745w0; (f) b=0.99w0

下载图片 查看所有图片

为了查明初始相干刃型位错斜率对相干涡旋和刃型位错作用的影响,图6给出了在不同斜率初始相干刃型位错情形下携带相干涡旋和刃型位错的GSM光束在z=100 m处的SDC相位分布。与图5(a)类似,在初始刃型位错斜率a=0时[图6(a)]光场出现了六个相干涡旋A+,B-,C+,D-,E+和F-。当斜率先后增加到a=0.0024[图6(b)]和a=0.007[图6(c)]时,新的相干涡旋G-和H-先后出现在光场中。随着斜率的增加相干涡旋E+和G-逐渐接近,并在a=0.015[图6(e)]时二者结合而湮灭。相干涡旋C+和H-也由于同样原因在a=0.0242时[图6(f)]湮灭。因此,初始相干刃型位错的斜率对其和相干涡旋的作用具有影响。

图 6. 海洋湍流中携带相干涡旋和不同斜率刃型位错的GSM光束的SDC相位分布。(a)a = 0;(b)a = 0.0024;(c)a = 0.007;(d)a = 0.013;(e)a = 0.015;(f)a = 0.0242

Fig. 6. Contour lines of phase of SDC for GSM beam with coherence vortex and edge dislocation in oceanic turbulence for different values of slope of edge dislocation. (a) a = 0; (b) a = 0.0024; (c) a = 0.007; (d) a = 0.013; (e) a = 0.015; (f) a = 0.0242

下载图片 查看所有图片

为了查明初始光束空间相关长度对相干涡旋和刃型位错作用的影响,图7给出了不同相关长度情形下携带相干涡旋和刃型位错的GSM光束在z=100 m处的SDC相位分布。由δ0=0.01 cm的图7(a)可见,光场中没有相干奇点出现。但是,当相关长度分别增加到δ0=0.021 cm[图6(b)]、δ0=0.051 cm[图7(c)]、δ0=0.088 cm[图7(d)]和δ0=0.106 cm[图7(e)]时,相干涡旋A+,B-,C-和D+逐个出现在光场中。这之后,随着相关长度的增加,相干涡旋B-和D+逐渐接近,并在δ0=0.147 cm[图7(f)]时二者结合而湮灭。这表明:初始相关长度对海洋湍流中相干涡旋和刃型位错的作用具有影响。

图 7. 海洋湍流中携带相干涡旋和刃型位错的GSM光束在不同相关长度情形下的SDC相位分布。(a)δ0=0.01 cm;(b)δ0=0.021 cm;(c)δ0=0.051 cm;(d)δ0=0.088 cm;(e)δ0=0.106 cm;(f)δ0=0.147 cm

Fig. 7. Contour lines of phase of SDC for GSM beam with coherence vortex and edge dislocation in oceanic turbulence for different values of spatial correlation length. (a) δ0=0.01 cm; (b) δ0=0.021 cm; (c) δ0=0.051 cm; (d) δ0=0.088 cm; (e) δ0=0.106 cm; (f) δ0=0.147 cm

下载图片 查看所有图片

4 结论

本研究通过类比完全相干光相位奇点的概念,提出了在部分相干光束中存在一种相干奇点——相干刃型位错。基于扩展的惠更斯-菲涅耳原理,推导出了携带相干涡旋和刃型位错的光束在海洋湍流环境下的交叉谱密度表达式,并用来研究该环境下相干涡旋和刃型位错的相互作用规律。结果表明:相干刃型位错在相干涡旋的作用下转化成相干涡旋。在光束传输过程中,光场中不仅可能有单个或成对相干涡旋的产生或消失,也有成对相干涡旋的产生和湮灭现象发生。相干涡旋和刃型位错的相互作用不仅与传输距离有关,还受光束初始参数和海洋湍流参数的影响。均方温度耗散速率χT和盐度温度波动的相对强度ω越大,或者单位质量湍流动能的耗散率ε越少,海洋湍流就越强,光束中相干涡旋的拓扑电荷守恒的距离就越小。本研究所得结果对于理解部分相干光及其携带的相干奇点在海洋湍流中的演化规律,寻求其在海洋光通信方面的潜在应用,有一定参考价值。

参考文献

[1] SoskinM S, VasnetsovM V. Singular optics[M]∥Progress in optics, Vol. 42. Amsterdam: Elsevier, 2001: 219-276.

[2] DennisM R, O’HolleranK, PadgettM J. Singular optics: optical vortices and polarization singularities[M]∥Progress in optics, Vol. 53. Amsterdam: Elsevier, 2009: 293-363.

[3] He D, Yan H W, Lü B D. Interaction of the vortex and edge dislocation embedded in a cosh-Gaussian beam[J]. Optics Communications, 2009, 282(20): 4035-4044.

[4] Gu Y L, Gbur G. Reduction of turbulence-induced scintillation by nonuniformly polarized beam arrays[J]. Optics Letters, 2012, 37(9): 1553-1555.

[5] 张凯宁, 刘永欣, 蒲继雄. 涡旋光束在海洋湍流中传输的闪烁因子[J]. 中国激光, 2019, 46(7): 0705001.

    Zhang K N, Liu Y X, Pu J X. Scintillation index of vortex beams propagating in oceanic turbulence[J]. Chinese Journal of Lasers, 2019, 46(7): 0705001.

[6] 陈康, 厉淑贞, 潘玉琪, 等. 部分相干径向偏振旋转对称幂指数相位涡旋光束紧聚焦特性研究[J]. 光学学报, 2022, 42(22): 2226002.

    Chen K, Li S Z, Pan Y Q, et al. Study on tight focusing characteristics of partially coherent radial polarization rotationally symmetric power exponential phase vortex beams[J]. Acta Optica Sinica, 2022, 42(22): 2226002.

[7] Schouten H F, Gbur G, Visser T D, et al. Phase singularities of the coherence functions in Young’s interference pattern[J]. Optics Letters, 2003, 28(12): 968-970.

[8] Palacios D M, Maleev I D, Marathay A S, et al. Spatial correlation singularity of a vortex field[J]. Physical Review Letters, 2004, 92(14): 143905.

[9] Huang Y P, Zhang B, Gao Z H, et al. Evolution behavior of Gaussian Schell-model vortex beams propagating through oceanic turbulence[J]. Optics Express, 2014, 22(15): 17723-17734.

[10] 刘永欣, 陈子阳, 蒲继雄. 随机电磁高阶Bessel-Gaussian光束在海洋湍流中的传输特性[J]. 物理学报, 2017, 66(12): 124205.

    Liu Y X, Chen Z Y, Pu J X. Propagation of stochastic electromagnetic high-order Bessel-Gaussian beams in the oceanic turbulence[J]. Acta Physica Sinica, 2017, 66(12): 124205.

[11] Liu Z L, Chen J L, Zhao D M. Experimental study of propagation properties of vortex beams in oceanic turbulence[J]. Applied Optics, 2017, 56(12): 3577-3582.

[12] Xu Y, Shi H F, Zhang Y X. Effects of anisotropic oceanic turbulence on the power of the bandwidth-limited OAM mode of partially coherent modified Bessel correlated vortex beams[J]. Journal of the Optical Society of America A, 2018, 35(11): 1839-1845.

[13] Ye F, Zhang J B, Xie J T, et al. Propagation properties of the rotating elliptical chirped Gaussian vortex beam in the oceanic turbulence[J]. Optics Communications, 2018, 426: 456-462.

[14] Liu D J, Wang G Q, Yin H M, et al. Propagation properties of a partially coherent anomalous hollow vortex beam in underwater oceanic turbulence[J]. Optics Communications, 2019, 437: 346-354.

[15] Wang W, Wang P, Pang W N, et al. Evolution properties and spatial-mode UWOC performances of the perfect vortex beam subject to oceanic turbulence[J]. IEEE Transactions on Communications, 2021, 69(11): 7647-7658.

[16] 郭寅龙, 聂芯雨, 李晋红, 等. 扭曲椭圆高斯谢尔模光束的自修复特性[J]. 激光与光电子学进展, 2023, 60(17): 1703001.

    Guo Y L, Nie X Y, Li J H, et al. Self-healing properties of twisted elliptical Gaussian Schell-model beams[J]. Laser & Optoelectronics Progress, 2023, 60(17): 1703001.

[17] MandelL, WolfE. Optical coherence and quantum optics[M]. Cambridge: Cambridge University Press, 1995.

[18] Tang B H, Luo Y M, Zhang Y, et al. Analytical vectorial structure of Gaussian beams carrying mixed screw-edge dislocations in the far field[J]. Optics Communications, 2014, 324: 182-187.

[19] 田燕男, 段美玲, 吴云光, 等. 高斯谢尔模型光束在生物组织中的光谱变化[J]. 中国激光, 2019, 46(12): 1207001.

    Tian Y N, Duan M L, Wu Y G, et al. Changes in spectra of Gaussian Schell-model beams propagating in biological tissues[J]. Chinese Journal of Lasers, 2019, 46(12): 1207001.

[20] Gbur G. Partially coherent vortex beams[J]. Proceedings of SPIE, 2018, 10549: 1054903.

[21] Freund I, Shvartsman N. Wave-field phase singularities: the sign principle[J]. Physical Review A, 1994, 50(6): 5164-5172.

[22] Gbur G, Wolf E. Spreading of partially coherent beams in random media[J]. Journal of the Optical Society of America A, 2002, 19(8): 1592-1598.

[23] Korotkova O, Farwell N, Shchepakina E. Light scintillation in oceanic turbulence[J]. Waves in Random and Complex Media, 2012, 22(2): 260-266.

[24] GradysteynI, RyzhikI. Table of integrals[M]∥Series and products. 7th ed. New York: Academic Press, 2007.

[25] 陈斐楠, 陈延如, 赵琦, 等. 部分相干厄米高斯光束在海洋湍流中光束传输质量的变化[J]. 中国激光, 2013, 40(4): 0413002.

    Chen F N, Chen Y R, Zhao Q, et al. Change of propagation quality factor of partially coherence Hermite-Gaussian beams traveling through oceanic turbulence[J]. Chinese Journal of Lasers, 2013, 40(4): 0413002.

[26] 任庭瑞, 于笑楠, 佟首峰, 等. 基于数字信号处理的高灵敏度水下光通信发收机设计与评估[J]. 中国激光, 2022, 49(4): 0406005.

    Ren T R, Yu X N, Tong S F, et al. Design and evaluation of high-sensitivity underwater optical communication transceiver based on digital signal processing[J]. Chinese Journal of Lasers, 2022, 49(4): 0406005.

陈海涛, 高曾辉. 相干涡旋和刃型位错在海洋湍流中的相互作用[J]. 中国激光, 2024, 51(8): 0805002. Haitao Chen, Zenghui Gao. Interaction Between Coherence Vortex and Edge Dislocation in Oceanic Turbulence[J]. Chinese Journal of Lasers, 2024, 51(8): 0805002.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!