应用激光, 2023, 43 (6): 0064, 网络出版: 2024-02-02  

11热输入对0Cr16Ni6合金激光熔覆修复层组织与性能的影响

Microstructures and Mechanical Properties of Laser Rapid Repaired 0Cr16Ni6 Alloy
作者单位
国营芜湖机械厂,安徽 芜湖 241007
摘要
针对0Cr16Ni6合金开展激光快速修复试验,利用光学显微镜(OM)和扫描电镜(SEM),观察分析所得接头的接头显微组织构成,利用显微硬度计检测接头硬度。研究表明:激光快速修复0Cr16Ni6合金接头分为基体、热影响区以及熔覆区;随着激光热输入的增加,热影响区组织形貌变化不大,与基体相似,由块状铁素体、奥氏体及其上析出的碳化物和少量板条状马氏体组成,且与熔覆区存在明显的分界线;熔覆区顶部区域组织分布均匀,主要为树枝晶,熔覆区中部呈现树枝晶向柱状枝晶过渡的趋势,熔覆区下部为柱状枝晶,枝晶尺寸随着激光热输入的增加而增大;熔覆区主要由基体γ相、强化相γ′和γ′′相及沿枝晶边界析出的白色不规则相δ和MC相等组成;随激光热输入的逐渐增加,热影响区宽度D和深度H的变动不大,仅存在±0.05 mm以内的微小波动;熔宽d和熔高h逐渐增加;熔覆区平均硬度值随单位时间内热输入量的增加,呈现先增加后减小的趋势,且各区域显微硬度值排序为熔覆区>基体>热影响区。
Abstract
The laser rapid repair test for 0Cr1Ni6 alloy was carried out and optical microscope and scanning electron microscope were used to observe and analyze the microstructure of the joint. The joint hardness was tested by micro-hardness test. Studies showed that the joint of Laser rapid repairing 0Cr1Ni6 alloy was divided into matrix, heat affected zone and cladding zone. The morphology of the heat affected zone has little change with the increasing of laser heat input. Similar to the matrix, it is composed of massive ferrite, austenite, carbides precipitated on that and a small amount of lath martensite. There is an obvious boundary in the cladding zone. The microstructures are mainly dendrites at the top of the cladding area is evenly distributed.I In the middle of the cladding zone, dendrite transition to columnar dendrite is observed. The lower part of the cladding zone is columnar crystal. Dendrite size increases with the increasing of laser heat input. The cladding zone is mainly composed of matrix γ phase, enhanced γ'and γ"phases, and white irregular phases δ and MC precipitated along the dendrite boundary. With the laser heat input increases, the width (D) and depth (H) of the heat affected zone have little change, only have small fluctuation within ±0.05 mm, melting width d, and melting height h gradually increase. The average hardness of cladding zone increases with the heat input per unit time, showing a trend of first increasing and then decreasing. The order of micro-hardness is cladding zone > matrix > heat affected zone.
参考文献

[1] 袁培柏. 0Cr16Ni6双相不锈钢及其热处理[J]. 材料工程, 1991, 19(6): 42-44.PEI B B. 0Cr16Ni6 double-phase stainless steel and its heat treatment[J]. Journal of Materials Engineering, 1991, 19(6): 42-44.

[2] 张雅, 方军, 吕韦, 等. 0Cr16Ni6不锈钢真空热处理表面硬度偏低研究[J]. 金属加工(热加工), 2020(10): 87-89.ZHANG Y, FANG J, L W, et al. Study on low surface hardness of 0Cr16Ni6 stainless steel after vacuum heat treatment[J]. Metal Working, 2020(10): 87-89.

[3] 付大文. 马氏体-奥氏体沉淀强化型不锈钢0Cr16Ni6的性能试验研究[J]. 机械制造与自动化, 2006, 35(4):70-72.FU D W. Experimental study of performance on martensitic-abstenitic precipitate strengthened 0Cr16Ni6 stainless steel[J]. Machine Building & Automation, 2006, 35(4):70-72.

[4] ZHU S, GUO Y C, YANG P. Remanufacturing system based on totally automatic MIG surfacing via robot[J]. Journal of Central South University of Technology, 2005, 12(2): 129-132.

[5] HENDERSON M B, ARRELL D, LARSSON R, et al. Nickel based superalloy welding practices for industrial gas turbine applications[J]. Science and Technology of Welding and Joining, 2004, 9(1): 13-21.

[6] TAN J C, LOONEY L, HASHMI M S J. Component repair using HVOF thermal spraying[J]. Journal of Materials Processing Technology, 1999, 92/93: 203-208.

[7] LIU F C, CHENG H M, YU X B, et al. Control of microstructure and mechanical properties of laser solid formed Inconel 718 superalloy by electromagnetic stirring[J]. Optics & Laser Technology, 2018, 99: 342-350.

[8] 周标, 秦仁耀, 唐斌, 等. 激光直接沉积修复1Cr15Ni4Mo3N钢磁痕分析[J]. 失效分析与预防, 2019, 14(1):35-39.ZHOU B, QIN R Y, TANG B, et al. Analysis of magnetic particle indication on 1Cr15Ni4Mo3N steel repaired using laser direct metal deposition technology[J]. Failure Analysis and Prevention, 2019, 14(1):35-39.

[9] 郄喜望, 张美娟, 邹纯昱, 等. ZTC4激光熔覆修复力学性能及失效分析[J]. 焊接, 2020(1): 29-35.QIE X W, ZHANG M J, ZOU C Y, et al. Mechanical properties and failure analysis of ZTC4 laser cladding repair[J]. Welding & Joining, 2020(1): 29-35.

[10] 宋建丽, 李永堂, 邓琦林, 等. 激光熔覆成形技术的研究进展[J]. 机械工程学报, 2010, 46(14):29-39.SONG J L, LI Y T, DENG Q L, et al. Research progress of laser cladding forming technology[J]. Journal of Mechanical Engineering, 2010, 46(14):29-39.

[11] 林鑫, 薛蕾, 陈静, 等. 钛合金零件的激光成形修复[J]. 航空制造技术, 2010, 53(8): 55-58.LIN X, XUE L, CHEN J, et al. Laser forming repair of titanium alloy parts[J]. Aeronautical Manufacturing Technology, 2010, 53(8): 55-58.

[12] 杨光, 王维, 钦兰云, 等. Ti6Al4V合金表面激光沉积复合涂层的组织和性能[J]. 强激光与粒子束, 2013, 25(10):2723-2728.YANG G, WANG W, QIN L Y, et al. Microstructure and property of laser metal deposition composite coating on Ti6Al4V alloy surface[J]. High Power Laser and Particle Beams, 2013, 25(10):2723-2728.

[13] 薛蕾, 陈静, 林鑫, 等. 激光快速修复Ti-6Al-4V合金的显微组织与力学性能[J]. 稀有金属材料与工程, 2007, 36(6):989-993.XUE L, CHEN J, LIN X, et al. Microstructures and mechanical properties of laser rapid repaired Ti-6Al-4V alloy[J]. Rare Metal Materials and Engineering, 2007, 36(6):989-993.

[14] 钦兰云, 卞宏友, 杨光, 等. 激光沉积修复TA15合金的组织和力学性能[J]. 强激光与粒子束, 2014, 26(8): 089001.QIN L Y, BIAN H Y, YANG G, et al. Microstructure and mechanical properties of laser deposition repaired TA15 alloy[J]. High Power Laser and Particle Beams, 2014, 26(8): 089001.

[15] SEXTON L, LAVIN S, BYRNE G, et al. Laser cladding of aerospace materials[J]. Journal of Materials Processing Technology, 2002, 122(1): 63-68.

[16] 邓德伟, 常占东, 马云波, 等. 工艺参数对316L激光熔覆层组织性能及残余应力的影响[J]. 应用激光, 2021, 41(1): 83-88.DENG D W, CHANG Z D, MA Y B, et al. Influence of process parameters on microstructure and residual stress of 316L laser cladding layer[J]. Applied Laser, 2021, 41(1): 83-88.

[17] 王丽芳, 孙亚新, 朱刚贤, 等. 激光熔覆316L不锈钢残余应力工艺参数的优化模拟[J]. 应用激光, 2019, 39(3): 376-380.WANG L F, SUN Y X, ZHU G X, et al. Optimization simulation of residual stress process parameters of laser cladding 316L stainless steel[J]. Applied Laser, 2019, 39(3): 376-380.

[18] 裴忠冶. K465镍基高温合金的研究[D]. 沈阳: 东北大学,2011.PEI Z Y. Study on K465 nickel-based superalloy[D].Shenyang: Northeastern University,2011.

[19] 黄乾尧, 李汉康. 高温合金[M]. 北京:冶金工业出版社,1997.HUANG Q Y, LI H K. Superalloy [M]. Beijing: Metallurgical Industry Press, 1997.

[20] 刘奋成, 林鑫, 余小斌, 等. 激光立体成形GH4169合金再结晶过程中的界面和晶体取向演化[J]. 金属学报, 2014, 50(4): 463-470.LIU F C, LIN X, YU X B, et al. Evolution of interface and crystal orientation of laser solid formed gh4169 superalloy during recrystallization[J]. Acta Metallurgica Sinica, 2014, 50(4): 463-470.

范朝, 程宗辉, 张志强. 11热输入对0Cr16Ni6合金激光熔覆修复层组织与性能的影响[J]. 应用激光, 2023, 43(6): 0064. Fan Zhao, Cheng Zonghui, Zhang Zhiqiang. Microstructures and Mechanical Properties of Laser Rapid Repaired 0Cr16Ni6 Alloy[J]. APPLIED LASER, 2023, 43(6): 0064.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!