硅酸盐通报, 2023, 42 (6): 2273, 网络出版: 2023-11-20  

层状Al2O3/EP复合材料的可控制备及性能研究

Controllable Preparation and Properties of Layered Al2O3/EP Composites
作者单位
1 北方民族大学材料科学与工程学院, 银川 750021
2 碳基先进陶瓷制备技术国家地方联合工程研究中心, 银川 750021
3 南昌航空大学航空制造工程学院, 南昌 330000
摘要
采用冰模板法构筑具有层状结构的Al2O3三维网络骨架, 并通过真空浸渍工艺制备出Al2O3/环氧树脂(EP)复合材料。研究了楔形硅橡胶角度、浆料固相含量、冷冻温度对层状Al2O3三维网络骨架微观结构的影响, 分析了片层间距对Al2O3/EP复合材料导热、介电和绝缘性能的影响。结果表明: 楔形硅橡胶角度为10°和15°时Al2O3三维网络骨架的层状有序性最佳, 固相含量的增加和冷冻温度的降低均会使片层间距减小; Al2O3/EP复合材料的热导率和介电常数随着片层间距的减小而增大, 但体积电阻率呈降低趋势; 当片层间距为45 μm时, 热导率达到0.52 W/(m·K), 体积电阻率为1012 Ω·cm。
Abstract
The Al2O3 3D network skeletons with layered structure were constructed by ice template method. The epoxy (EP) was successfully infiltrated into the pores of porous Al2O3 material by vacuum impregnation process, and finally the Al2O3/EP composites were prepared. The influences of wedge silicone rubber angle, slurry solid content and freezing temperature on the microstructure of layered Al2O3 3D network skeleton were investigated. And the influence of the lamellar spacing on the thermal, dielectric and insulation properties of Al2O3/EP composites was analyzed. The results show that the order of layered Al2O3 3D network skeleton is the best with the wedge silicone rubber angle of 10° and 15°. Simultaneously, the lamellar spacing in the Al2O3 3D network skeleton decreases with the increase of solid content and the decrease of freezing temperature. The thermal conductivity and dielectric constant of Al2O3/EP composites increase with the decrease of the lamellar spacing, but the volume resistivity shows a decreasing trend. When the lamellar spacing is 45 μm, the thermal conductivity reaches 0.52 W/(m·K) and the volume resistivity is 1012 Ω·cm.
参考文献

[1] 王瑾玉, 张永海, 魏进家. 功率器件热界面材料研究进展[J]. 工程热物理学报, 2022, 43(10): 2699-2710.

[2] SCIAMANNA V, NAIT-ALI B, GONON M. Mechanical properties and thermal conductivity of porous alumina ceramics obtained from particle stabilized foams[J]. Ceramics International, 2015, 41(2): 2599-2606.

[3] WU G L, WANG Y Q, WANG K K, et al. The effect of modified AlN on the thermal conductivity, mechanical and thermal properties of AlN/polystyrene composites[J]. RSC Advances, 2016, 6(104): 102542-102548.

[4] ZHAO J W, ZHAO R, HUO Y K, et al. Effects of surface roughness, temperature and pressure on interface thermal resistance of thermal interface materials[J]. International Journal of Heat and Mass Transfer, 2019, 140: 705-716.

[5] CHUNG D D L. Performance of thermal interface materials[J]. Small, 2022, 18(16): e2200693.

[6] YU S Q, HUANG M M, HAO R, et al. Recent advances in thermally conductive polymer composites[J]. High Performance Polymers, 2022, 34(10): 1081-1101.

[7] MA H Q, GAO B, WANG M Y, et al. Strategies for enhancing thermal conductivity of polymer-based thermal interface materials: a review[J]. Journal of Materials Science, 2021, 56(2): 1064-1086.

[8] XU Y F, WANG X J, HAO Q. A mini review on thermally conductive polymers and polymer-based composites[J]. Composites Communications, 2021, 24: 100617.

[9] ZHANG F, FENG Y Y, FENG W. Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms[J]. Materials Science and Engineering: R: Reports, 2020, 142: 100580.

[10] MEHRA N, LI Y F, YANG X T, et al. Engineering molecular interaction in polymeric hybrids: effect of thermal linker and polymer chain structure on thermal conduction[J]. Composites Part B: Engineering, 2019, 166: 509-515.

[11] HUANG Y F, WANG Z G, YU W C, et al. Achieving high thermal conductivity and mechanical reinforcement in ultrahigh molecular weight polyethylene bulk material[J]. Polymer, 2019, 180: 121760.

[12] GU J W, LV Z Y, WU Y L, et al. Enhanced thermal conductivity of SiCp/PS composites by electrospinning-hot press technique[J]. Composites Part A: Applied Science and Manufacturing, 2015, 79: 8-13.

[13] JIANG F, CUI S Q, RUNGNIM C, et al. Control of a dual-cross-linked boron nitride framework and the optimized design of the thermal conductive network for its thermoresponsive polymeric composites[J]. Chemistry of Materials, 2019, 31(18): 7686-7695.

[14] 王绪彬, 张昌海, 张天栋, 等. 三维多孔氮化铝/环氧树脂复合材料的导热与电性能[J]. 复合材料学报: 1-7 (2022-09-06) [2023-02-15]. https://doi.org/10.13801/j.cnki.fhclxb.20220905.002.

[15] LIANG J Z, ZHU B. Estimation of thermal conductivity of polymer multiphase composites[J]. Polymer Engineering & Science, 2017, 57(9): 965-972.

[16] QU J Y, FAN L, MUKERABIGWI J F, et al. A silicon rubber composite with enhanced thermal conductivity and mechanical properties based on nanodiamond and boron nitride fillers[J]. Polymer Composites, 2021, 42(9): 4390-4396.

[17] LEE W, WIE J, KIM J. Enhancement of thermal conductivity of alumina/epoxy composite using poly (glycidyl methacrylate) grafting and crosslinking[J]. Ceramics International, 2021, 47(13): 18662-18668.

[18] ZHAO Z B, DU X Y, WANG Y, et al. Preparation of a novel bi-layer modified alumina-based hybrid material and its effect on the thermal conductivity enhancement of polymer composites[J]. Ceramics International, 2022, 48(11): 15483-15492.

[19] HU Y, DU G P, CHEN N. A novel approach for Al2O3/epoxy composites with high strength and thermal conductivity[J]. Composites Science and Technology, 2016, 124: 36-43.

侯俊峰, 唐鹏程, 田少华, 张明哲, 吴集思. 层状Al2O3/EP复合材料的可控制备及性能研究[J]. 硅酸盐通报, 2023, 42(6): 2273. HOU Junfeng, TANG Pengcheng, TIAN Shaohua, ZHANG Mingzhe, WU Jisi. Controllable Preparation and Properties of Layered Al2O3/EP Composites[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(6): 2273.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!