光学学报, 2023, 43 (21): 2128001, 网络出版: 2023-11-08  

基于光反射式耦合探针的高灵敏曲率与振动双参量传感器

Highly Sensitive Curvature and Vibration Dual-parameter Sensor Based on Optical Reflective Coupler Probe
作者单位
南京邮电大学电子与光学工程学院、柔性电子(未来技术)学院,江苏 南京 210023
摘要
提出并研究了基于光反射式耦合探针(ORCP)的高灵敏曲率和振动双参量传感器。ORCP通过光纤熔融拉锥、耦合结合垂直切割方法制备而成,尺寸为mm级别。将弯曲或振动信号施加于ORCP悬臂耦合区域,改变干涉超模的模场分布以及折射率,引起反射光谱波长或强度偏移,实现对曲率和振动两种物理量的高灵敏度测试。其中,曲率灵敏度高达11.97 nm/m-1,响应范围为0~10.49 m-1,线性度大于0.98。振动灵敏度为0.72 mV/V@80 kHz,超宽带振动频率响应范围为185 Hz~20 MHz,具有高保真度以及高线性度,信噪比达到~53.56 dB。此外,该传感器可实现阻尼振动信号的检测以及声音识别。所提基于ORCP曲率和振动传感器具有灵敏度高、响应范围宽、线性度好、稳定性高、保真度高等优势,探针尺寸为mm级别,结构紧凑,支撑其在油田、煤矿等受限空间与恶劣环境领域中的潜在应用,有望实现基础设施突发事件潜在威胁的预测以及微小裂缝的检测。
Abstract
Objective

Due to inherent merits of anti-electromagnetic disturbance, compact size, high sensitivity and low fabrication cost, fiber curvature sensor (FCS) and fiber vibration sensor (FVS) play important roles in optical fiber sensing and optical fiber communication, which can achieve effective structural safety monitoring and be widely used in structural health monitoring basic fields such as machinery manufacturing, bridge transportation, oil and gas pipelines. Moreover, the researches on multi-parameter fiber optic sensors have been driven by miniaturized and multifunctional sensor solutions, as well as the need to meet the measurement of multiple physical quantities in narrow operating environments. While meeting the application requirements of curvature and vibration sensing, it is necessary to further improve sensitivity and response range. In practical sensing applications, solving the cross-sensitivity problem of multiple parameters and applying it in confined spaces and harsh environments also puts forward higher requirements for the compactness, flexibility, and adaptability of sensors. In this paper, a highly sensitive curvature and vibration dual-parameter sensor based on optical reflective coupler probe (ORCP) is proposed and demonstrated. With the advantages of high sensitivity, wide response range, good linearity, high stability, high fidelity, and the probe size is in mm level with compact structure, the dual-parameter sensor based on ORCP would further be widely used in limited space and harsh environment fields, providing good application prospects in oil, coal mine and other structural safety monitoring fields.

Methods

The beam propagation method (BPM) was used to simulate the modal field intensity distribution of different ORCPs. In order to fabricate the ORCP, it is necessary to obtain the single mode microfiber coupler (SMC) firstly. Two single mode fibers (SMFs, core/cladding diameter is 8.2/125 μm, NA is 0.14) are aligned with each other before they are fused together using the flame modification method. During the fabrication process, the hydrogen gas flow, stretching speed and length, which determine the performance of the SMC are controlled and optimized. Based on the brittle fracture characteristics of quartz optical fibers, applying axial tension to the fabricated SMC and snapping the waist region with a gem knife to form the Fresnel reflection end face with high quality. The waist diameter and coupling region length of the ORCP are characterized by optical microscope. For curvature sensing, the bending signals applied to the coupling region of the ORCP cause changes in the wavelength and intensity of reflection spectra. A broadband source (BBS, 1250 nm to 1650 nm) is connected to the port 1 and the reflection spectra of the ORCP are recorded by an optical spectrum analyzer (OSA, AQ6370D, resolution of 0.02 nm, 900 nm-1700 nm) real time through port 2 of the ORCP. For vibration sensing, a piezoelectric transducer is connected to the coupling region of the ORCP to apply vibration signals. If the wavelength of narrow linewidth laser was tuned to the reflection spectral wave-nodes of the ORCP, the output intensity will be modulated. A tunable laser source (TLS, line width < 5 kHz) is connected to the port 1 and output signals (port 2) are recorded by potodetector and oscilloscope to realize the detection of continuous single-frequency, damped vibration signal and sound recognition.

Results and Discussions

In the measurement of curvature sensing based on the absolute symmetric ORCP, as curvature is increased from 0 m-1 to 9.58 m-1, the wavelength red shifts and is stable gradually while the intensity changes weakly (Fig. 6). When the curvature increases from 0 m-1 to 1.92 m-1, the wavelength red shifts with sensitivities of 0.63 nm/m-1 (-0.29 dB/m-1) @ 1510 nm and 0.58 nm/m-1 (0.29 dB/m-1) @ 1470 nm, respectively. The linearity (R2) is ~0.99. As curvature is increased from 1.92 m-1 to 3.75 m-1, the sensitivities are 2.75 nm/m-1 (2.16 dB/m-1) @ 1470 nm and 2.84 nm/m-1 (-2.01 dB/m-1) @ 1510 nm, respectively. The curvature continues to increase from 3.75 m-1 to 9.58 m-1, the wavelength and intensity are stable. In the measurement of curvature sensing based on the single ORCP, the envelope of the ORCP's reflection spectrum red shifts with increased curvatures (Fig. 7). As curvature is increased from 0.57 m-1 to 10.49 m-1, the shift of the spectral envelope is ~56.6 nm. The measured curvature sensitivity is 11.97 nm/m-1 (-1.88 dB/m-1) @ 1470 nm ranging from 0.57 m-1 to 3.72 m-1 and the R2 is 0.98. When curvature increases from 4 m-1 to 10.49 m-1, the sensitivity is 2.63 nm/m-1@1470 nm with R2 of 0.94. The experimental results indicate that the proposed ORCP is suitable for monitoring small curvature deformations. For the vibration sensing, the proposed single ORCP can achieve frequency response range from 185 Hz to 20 MHz without data filtering process. The R2 of vibration detection is ~1 and the resolution of real-time vibration signal monitoring can reach 1 Hz with good fidelity (Fig. 9). The ORCP achieves a sensitivity of 0.72 mV/V@80 kHz (Fig. 11) and the highest signal-to-noise ratio is ~53.56 dB @ 2 MHz (Fig. 10). The vibration amplitude of the ORCP at different frequencies is tested for many times and the amplitude fluctuation is <0.1 dB. In addition, the sensor can realize the detection of damped vibration signal and sound recognition with high stability.

Conclusions

A highly sensitive curvature and vibration dual-parameter sensor based on ORCP is proposed and demonstrated. The ORCP is fabricated by melting coupling method and vertical cutting technology. The sensing performance is stable and not influenced by packaging methods, achieving high sensitivity for detecting weak curvature and vibration signals. Applying bending or vibration deformation signals to the ORCP cantilever-beam coupling region changes the refractive index and mode field distribution of the interference supermodes, causing a shift in the wavelength or reflection of the spectrum, realizing sensing of curvature and vibration with high sensitivity. For curvature sensing, the sensitivity is up to 11.97 nm/m-1 ranging from 0 m-1 to 10.49 m-1, and the linearity is >0.98. For vibration sensing, the ORCP has a sensitivity of 0.72 mV/V@80 kHz and achieves an ultra-wideband frequency response range from 185 Hz to 20 MHz with high fidelity and linearity, and the signal-to-noise ratio is ~53.56 dB. In addition, the sensor can realize the detection of damped vibration signal and sound recognition with high stability. The proposed curvature and vibration sensor based on ORCP has the advantages of high sensitivity, wide response range, good linearity, high stability, high fidelity, and the probe size is in mm level with compact structure, supporting its potential application prospects in limited space and harsh environment fields such as oil field, coal mine and other structural safety monitoring fields, which is expected to achieve the prediction of potential threats of infrastructure emergencies.

1 引 言

光纤传感器具有抗电磁干扰、体积小、灵敏度高、稳定性好、制造成本低等显著优点,其中,光纤曲率传感器(FCS)和光纤振动传感器(FVS),可以实现有效的结构安全监测,广泛应用于机械制造、桥梁运输、油气管道等结构健康监测基础领域,用于预测基础设施突发事件或事故的潜在威胁并有效避免。

基于不同光纤结构的FCS和FVS相继被提出,包括光纤光栅(OFG)1-3、马赫-曾德尔干涉仪(MZI)4-6、法布里-珀罗干涉仪(FPI)7-8和微光纤结构9-10等。通过光纤的结构与材料功能化作用11-14,可实现高灵敏度曲率和振动检测。2015年,Sun等11基于错位偏芯熔接方法制备single mode fiber-fiber Bragg grating-multimode fiber-single mode fiber(SMF-FBG-MMF-SMF)结构,曲率灵敏度达到-0.164 nm/m-1。2016年,Dass等12利用火焰喷刷技术在SMF上产生两个级联薄锥的混合级联结构,曲率灵敏度达到-11.92 dB/m-1,范围为0 m-1~1 m-1。2018年,Ni等13提出一种基于石墨烯膜片的声学FVS,频率响应范围(FR)为5 Hz~0.8 MHz,信噪比(SNR)高达35 dB。2019年,Zhou等14报道出基于Morpho蝴蝶翅膀光子纳米结构的声FVS,SNR高达56.4 dB@1 kHz,响应范围为200 Hz~4500 Hz。2022年,本研究团队提出一种基于氧化石墨烯-FPI以及模式选择耦合器的高灵敏振动传感器,响应范围分别为4 Hz~20 kHz15以及3 Hz~22 MHz16

为进一步增强FCS以及FVS的灵敏度并拓宽响应范围,基于新型光纤结构的光纤传感器被相继提出。2021年,Jiang等17基于保偏光纤长周期光栅提出一种FCS,最大灵敏度达到9.26 nm/m-1,曲率响应范围为0 m-1~4.137 m-1。2019年,Tan等18提出基于一多模双锥形超细光纤的FCS,曲率灵敏度最大为0.7 nm/m-1,范围为0 m-1~11.82 m-1。同年,Novais等8提出一种基于多模气泡腔结构的FCS,曲率灵敏度达到(0.561±0.014)dB/m-1。2019年,Yu等19基于空心光子晶体光纤提出全光纤温度不敏感型FVS,响应范围为1 Hz~20 kHz。2019年,Sui等20提出一种基于双包层光纤的声FVS,响应范围为1 Hz~400 kHz。在满足曲率和振动传感应用要求的同时,需要进一步提高灵敏度和响应范围。在实际传感应用中需要解决多个参数的交叉敏感性问题21以及应用在受限空间与恶劣环境时对传感器的紧凑型、灵活性和适应性也提出了更高的要求。

本文提出并研究一种基于光反射式耦合探针(ORCP)的高灵敏度曲率传感器(ORCP-FCS)和振动传感器(ORCP-FVS)。利用两根SMF通过加热熔融、拉锥、耦合方法结合垂直切割技术,在耦合区域构建菲涅耳反射端面而成。基于紧凑的悬臂梁探针式结构,实现对曲率和振动两种物理量的高灵敏度测试。施加在ORCP上的弯曲、振动形变可改变结构悬臂耦合区域的折射率分布,引起反射光谱波长或强度的偏移。对于曲率传感测试,灵敏度高达11.97 nm/m-1,线性度大于0.98。对于振动传感测试,ORCP实现了从185 Hz到20 MHz的超宽带响应范围,灵敏度为0.72 mV/V@80 kHz,具有高保真度以及高线性度,SNR高达~53.56 dB。此外,该传感器可实现阻尼振动信号的检测以及声音识别。由于该传感器具有灵敏度高、稳定性好、频率响应范围宽以及结构紧凑性高等特点,在结构健康监测和环境评估中具有潜在的应用价值。

2 理论模型与器件制备

2.1 ORCP的理论模型

图1(a)为ORCP的几何结构示意图,包括两个端口(port 1和port 2)、一个耦合区域和一个反射平面。LD分别表示ORCP的耦合区长度和直径。当光注入port 1并到达耦合区域时,根据超模理论,奇、偶超模被激发,沿耦合区域传输、干涉并到达反射端面。由于强菲涅耳反射效应,两个超模再次返回ORCP的耦合区域实现二次干涉。在传输过程中,超模产生一定的光学相位差,相互耦合、干涉,实现干涉叠加,反射光谱由port 2输出并监测。当在耦合区域施加扰动信号(弯曲或振动),引起干涉超模间有效折射率差(ERID)或耦合区长度L变化,影响输出反射光谱。

图 1. 不同ORCP内的模场传输与功率分布。(a)ORCP结构示意图;(b)(e)未弯曲和弯曲ORCP的模场传输;(c)(f)未弯曲和弯曲ORCP纤芯和包层中的功率传播;(d)(g)未弯曲和弯曲ORCP耦合区内包层中功率传播细节放大图

Fig. 1. The mode field transmission and power distribution within different ORCPs. (a) Schematic diagram of ORCP; (b)(e) mode field transmission in ORCP without bent and with bent; (c)(f) power propagation in the core and cladding of ORCP without bent and with bent; (d)(g) enlarged view of power propagation details in the cladding within the coupling zone of the ORCP without bent and with bent

下载图片 查看所有图片

图1(b)为利用光束传播法(BPM)模拟分析ORCP中的光场传输结果。工作波长设置为1550 nm,背景折射率(RI)设置为1.0,D为~3 µm,L为~3.5 mm。随着光纤直径逐渐减小,更多倏逝场产生泄漏。图1(c)为ORCP的port 1以及port 2中纤芯和包层功率传输结果,1-power、2-power分别为port 1和port 2纤芯中的光功率大小,3-power和4-power分别为port 1和port 2包层中的光功率大小。随着光纤直径逐渐降低,port 1纤芯中光功率逐渐减小,至耦合区域时达到最低,转换至port 2纤芯中功率较少。耦合区内port 1、port 2中包层功率相互耦合,实现能量转换。图1(d)为ORCP耦合区port 1、port 2中包层功率传输的细节图。图1(e)~(g)为ORCP在弯曲作用下的光场传输结果(弯曲半径设置为10 µm),相比于未弯曲的ORCP,耦合区域施加弯曲,引起port 1中较强的倏逝场泄漏。随着弯曲半径由0 µm逐渐增大至10 µm,传输的总光能量减少~20%,两根光纤内的包层模式功率耦合效率降低,对弯曲扰动具有较强的敏感性。

由于整个耦合区域中偶超模和奇超模之间的干涉,ORCP的输出端功率产生耦合与交换。根据耦合模理论,该ORCP为弱耦合器件,在xy偏振态下的耦合系数22

Cx/y=23/2(n12-n02)1/2U2(2n12V+1)n13a(π)V7/2

式中:n1n0分别为光纤包层以及空气中的折射率系数;a为耦合区单根微纳光纤的直径(a=D/2);U=2.405;V=[(2πa)/λ](n12-n021/2λ为入射光波长。当光由port 1进入并由端面反射,由port 2输出,该端口的输出功率P2

P2=12n1-n0n1+n021-cos[(C¯x+C¯y)2L]cos[(C¯x-C¯y)2L]=12n1-n0n1+n021-cos2θcos212φx+sin2θcos212φy

式中:L是ORCP的耦合长度;C¯xC¯y对应整个耦合区域的平均值;θ是输入光和偏振面与水平轴之间的角度;φi(i=x,y)为不同偏振态下的干涉模式相位差。由式(1)、(2)可知,ORCP的输出光功率取决于θ以及φi,该结构的相位差表示为

φi=πλ(neffeven-neffodd)2L

当相位差满足φi=(2N+1)πN为正整数时产生相消干涉,干涉光谱处于波谷,结合式(3),可得到该位置处的波长为

λdip=(neffeven-neffodd)2L2N+1

在ORCP上施加扰动信号,改变耦合区域干涉模场分布,导致ERID以及干涉长度L改变,引起相位差变化,改变输出光谱,体现在光谱波长漂移量的变化上,干涉光谱波长的漂移量为

Δλ=λ(neffeven-neffodd)d(neffeven-neffodd)dc+λLdLdcΔc

式中,Δc为外界扰动物理量的变化。根据式(2)可知,ORCP是偏振相关型器件,入射光基模的偏振角影响输出光谱。当入射光由ORCP结构的port 1进入,同时激发两个正交的基模。当其到达耦合区域时,激发奇、偶超模。具有不同有效折射率的奇、偶超模在耦合区产生干涉、耦合,正交基模对的存在使得光谱呈现包络状分布23-24图2为不同结构参数下ORCP的仿真光谱图。图2(a)为固定耦合长度(L=4 mm)时,改变ERID对应的仿真光谱图。随着ERID逐渐增大(ERID变化量Δn=0.0002),光谱逐渐产生红移,输出强度产生周期性变化。图2(b)为干涉模式ERID为0.02时,不同耦合长度下对应的仿真光谱图。随着L逐渐增大(ΔL=5 µm),光谱逐渐向长波长漂移。可知,ORCP的参数发生变化,L或ERID变化,改变光场分布,引起反射光谱发生改变。

图 2. 不同结构参数下ORCP的仿真反射光谱。(a)L固定,不同ERID;(b)ERID固定,不同L

Fig. 2. Simulated reflection spectra of ORCP with different structural parameters. (a) Different ERIDs with a fixed L; (b) different L with a fixed ERID

下载图片 查看所有图片

2.2 器件制备与性能

将两个平行SMF(纤芯/包层直径为8/125 µm,纤芯/包层RI为1.455/1.445)使用火焰改性方法熔融拉锥、耦合,形成普通SMF耦合器(绝对对称型ORCP)。制备过程中,控制并优化决定光纤结构性能的氢气流量、拉伸速度和长度。基于石英光纤的易脆性断裂特性,对结构施加轴向张力的同时,垂直切割单模光纤耦合器耦合区域的中心位置,以产生高质量菲涅耳反射端面。ORCP的port 1与port 2分别与宽带光源(BBS,1250 nm~1650 nm)以及光谱分析仪(OSA,AQ6370D,带宽分辨率为0.02 nm)相连,实时记录输出反射光谱。图3(a)、(b)分别为ORCP耦合区域的轴向和横截面显微图像,耦合区长度L为~3 mm,锥区长度为~1.5 cm,D为~2.5 µm。图3(c)是空气中测量的ORCP的反射光谱,损耗(loss)为~16.2 dB,最大消光比(ERmax)为~29.7 dB,自由光谱范围(FSR)为19.8 nm,由于入射光正交基模对的存在,干涉光谱呈现包络状分布。

图 3. ORCP的显微镜实物图和反射光谱。(a)耦合区纵向显微镜图像;(b)耦合区横向光纤截面显微镜图像;(c)反射光谱

Fig. 3. Microscopic images and the measured spectral results of the ORCP. (a) At the coupling region; (b) at the fiber cross-section; (c) the output spectrum

下载图片 查看所有图片

3 曲率传感实验

3.1 实验装置

图4(a)为基于ORCP的曲率传感实验装置,包括BBS、两个三维平移台(3D-TP)以及OSA。通过BBS与OSA实时记录ORCP在不同弯曲程度下的反射光谱。其中,3D-TP1用于夹持ORCP并使其耦合区悬空。利用3D-TP2固定外径约为435 µm的毛细玻璃管,将其置于ORCP耦合区域下方并垂直放置。首先,调整3D-TP1和3D-TP2的相对位置,使得毛细玻璃管与ORCP的弱耦合区域(距离反射端面~1.31 mm)相切。其次,3D-TP1保持不动,利用3D-TP2调节毛细玻璃管与ORCP耦合区的距离,逐渐接触ORCP耦合区,促使其产生弯曲。原理分析如图4(b)所示,等效曲率C和弯曲半径R之间的关系为

C=1R=2dd2+X2

式中:X为毛细玻璃管与ORCP接触点至ORCP固定点处的距离,约1.87 cm;d为毛细玻璃管垂直上下的移动距离。

图 4. 基于ORCP的曲率传感实验。(a)实验装置;(b)原理分析

Fig. 4. Curvature sensing experiment of the ORCP. (a) Experimental setup; (b) principle analysis

下载图片 查看所有图片

3.2 实验结果与分析

在基于ORCP的曲率传感实验中,首先测试了基于绝对对称型ORCP的曲率特性,并与单个ORCP的曲率传感特性进行对比。绝对对称型ORCP是垂直切割前完整的光纤耦合器,属于透射型光纤器件,具体结构如图5(a)所示,包含4个端口(port 1、port 2、port 3、port 4)、1个强耦合区以及2个弱耦合区。图5(b)为基于绝对对称型ORCP结构的曲率传感实验装置。由于绝对对称型ORCP是直通式结构,将其两端置于高精密位移平台并固定,控制两个固定位移平台间位置的变化(精度为1 µm),实现弯曲信号的加载。

图 5. 基于绝对对称型ORCP的曲率传感实验。(a)绝对对称型ORCP结构示意图;(b)实验装置

Fig. 5. Curvature sensing experiment of the absolute symmetric ORCP. (a) Schematic diagram of the absolute symmetric ORCP; (b) experimental setup

下载图片 查看所有图片

基于绝对对称型ORCP的曲率测试结果如图6所示。图6(a)为不同曲率下的透射光谱,插图为光谱细节放大图(1460~1520 nm)。随着曲率由0 m-1增大至9.58 m-1,光谱dip波长逐渐产生红移,之后趋于平缓,同时强度发生微小变化。图6(b)为光谱波长、强度与曲率拟合关系曲线。当外加曲率从0 m-1增加到1.92 m-1时,曲率灵敏度为0.63 nm/m-1(-0.29 dB/m-1)@1510 nm、0.58 nm/m-1(0.29 dB/m-1)@1470 nm。当外加曲率从1.92 m-1增加到3.75 m-1时,曲率灵敏度达到2.75 nm/ m-1(2.16 dB/m-1)@1470 nm、2.84 nm/m-1(-2.01 dB/m-1)@1510 nm。外加曲率由3.75 m-1继续增大至9.58 m-1时,光谱波长以及强度变化平缓,几乎不产生漂移,曲率变化达到饱和状态。曲率监测范围为~0 m-1~9.58 m-1,线性响应区间位于0 m-1~1.92 m-1以及1.92 m-1~3.75 m-1,且曲率的线性响应区间与选取峰值对比度无关。

图 6. 基于绝对对称型ORCP的曲率传感实验结果。(a)不同曲率下的透射光谱;(b)波长、强度与曲率拟合关系曲线

Fig. 6. Experimental results of curvature sensing based on absolute symmetric ORCP. (a) The transmission spectra with different curvatures; (b) fitting relationship between wavelength, transmission and curvature

下载图片 查看所有图片

在单个ORCP的曲率实验中,毛细玻璃管单调升高以实现ORCP的弯曲,测试单个ORCP的曲率传感特性。图7(a)显示了ORCP在不同曲率(2 m-1~8.53 m-1)下的反射光谱包络。插图是曲率C分别为2.57 m-1d=0.45 mm)、3.72 m-1d=0.65 mm)、8.53 m-1d=1.5 mm)时的ORCP反射光谱以及光谱拟合的下包络曲线的细节放大图。相比于绝对对称型ORCP光谱变化趋势,由于反射面的引入,损耗增大,单个ORCP的光谱波长随曲率变化dip波长漂移量减小,强度变化明显,故采用光谱包络解调方式。可知随着曲率逐渐增大,ORCP反射光谱的包络逐渐产生红移。当外加曲率从0.57 m-1d=0.1 mm)增加到10.49 m-1d=1.85 mm)时,光谱包络红移约为56.6 nm。图7(b)为ORCP弯曲曲率与波长关系曲线图,值得注意的是,与绝对对称型ORCP光谱dip波长漂移变化趋势相同,在整个曲率变化范围呈非线性变化。随着曲率增大,dip波长漂移量变化逐渐平缓,趋于饱和。当曲率变化范围在0.57 m-1~3.72 m-1时,曲率灵敏度为11.97 nm/m-1(-1.88 dB/m-1)@1470 nm,线性度为0.98。当曲率变化范围为4 m-1~10.49 m-1,曲率灵敏度为2.63 nm/m-1@1470 nm,线性度为0.94,曲率的线性响应区间与选取峰值对比度无关。ORCP的弯曲程度取决于结构本身的物理参数,包括耦合区直径D、耦合区长度L以及RI分布大小。相比于绝对对称型ORCP的曲率传感特性,单个ORCP菲涅耳反射面的引入造成ORCP的耦合区光损耗变化,引起反射强度改变的同时,引入模场二次干涉,增强倏逝场传感特性,曲率灵敏度提升~4倍,曲率变化范围扩大。实验结果表明,基于ORCP的曲率传感器更适合于监测小的曲率变形。

图 7. 基于ORCP的弯曲传感实验结果。(a)不同曲率下的ORCP反射光谱及其包络;(b)波长、反射强度与曲率之间的拟合关系

Fig. 7. Experimental results of curvature sensing based on ORCP structure. (a) The reflection spectra and the envelopes with different curvatures; (b) fitting relationship between wavelength, reflection and curvature

下载图片 查看所有图片

将所提ORCP-FCS性能与之前报道过的基于不同类型光纤结构的FCS进行比较,包括曲率灵敏度以及曲率响应范围,结果如表1所示。

表 1. 不同类型光纤曲率传感器的性能比较

Table 1. Performance comparisons of different FCSs

StructureSensitivityCurvature rangeReference
FPI0.561 dB/m-10-0.8 m-18
SMF-FBG-MMF-SMF-0.164 nm/m-10-1.5338 m-111
PMF-LPG9.26 nm/m-10-4.137 m-117
Tapered fiber0.7 nm/m-10-11.82 m-118
ORCP-FCS11.97 nm/m-10-10.49 m-1Proposed work

查看所有表

4 振动传感实验

4.1 实验装置

图8为基于ORCP的振动传感实验装置,包括可调谐激光源(TLS,线宽为5 kHz)、可调谐光衰减器(VOA)、偏振控制器(PC)、ORCP、光电探测器(PD,1811-FC,带宽为125 MHz)和示波器(OSC)。ORCP固定于3D-TP1,耦合区域悬空。实验中,采用一圆盘型压电陶瓷(PZT,谐振频率为2 MHz,上海纳陶科技有限公司),在其中心位置处粘合一铝锥,构建复合锥形PZT,衬底材料为铜板,边长为4 cm,厚度为1 cm。利用显微镜以及3D-TP2精确控制复合锥形PZT顶部与ORCP耦合区的相对位置,将PZT顶部置于耦合区域的正下方并相切接触。利用函数信号发生器(FSG)施加正弦波信号驱动PZT,振动信号被集中加载至铝锥顶点位置,实现振动信号的加载。将窄线宽激光器的波长调谐到反射谱波节点附近,ORCP的输出强度将受到调制。

图 8. 基于ORCP的振动传感实验装置

Fig. 8. Experimental setup of ORCP-FVS

下载图片 查看所有图片

4.2 连续单频振动传感

图9为ORCP的port 2在185 Hz~20 MHz范围内的连续单频振动信号响应(驱动电压为10 V)。TLS的中心波长设置为1530 nm。图9(a)、(c)为测试的部分时域谱,呈现周期性正弦信号分布,施加频率范围分别为11 kHz~20 kHz以及100 kHz~400 kHz。图9(b)、(d)、(e)为对应的频域谱及SNR分布。在图9(b)中,ORCP在11 kHz~20 kHz内SNR最大达到48.93 dB,最小为SNR~20 dB。不同频率下测得的SNR波动小于0.1 dB。在图9(b)、(e)中,振动检测的最高SNR为~53.56 dB(2 MHz,对应PZT的共振频率),而最低SNR为~9.68 dB(20 MHz)。图9(f)为在185 Hz~20 MHz范围内,测试的基本输出振动信号频率与实际施加的振动信号频率关系,其中,插图为频率响应在185 Hz~900 Hz范围内的频域谱。可知,输出振动信号频率与实际施加的振动信号频率一一对应,基于ORCP振动检测的线性度约为1,保真度良好,振动信号实时监测的分辨率可达1 Hz。因此,所提基于ORCP的振动传感器可高保真地恢复原始振动信号,同时实现从Hz到MHz的FR,而无需进行数据滤波处理。同时多次测试了ORCP在不同频率下的振动幅值,幅值波动小于0.1 dB,该振动传感器具有较高的稳定性以及重复性。

图 9. 基于ORCP-FVS对不同连续单频振动信号的响应测试。(a)(c)11 kHz~400 kHz振动信号对应的时域谱;(b)(d)(e)11 kHz~20 MHz振动信号的频域谱和对应的SNR;(f)185 Hz~20 MHz的基本输出振动信号频率与实际施加的振动信号频率关系,插图为185 Hz~900 Hz振动信号的频域谱

Fig. 9. The measured response of the ORCP-FVS with different single-frequency vibration signals. (a)(c) The measured frequency-domain spectra from 11 kHz to 400 kHz; (b) (d) (e) the corresponding time-domain spectra of vibration signals and SNRs from 11 kHz to 20 MHz; (f) the linearity of the ORCP-FVS for vibration detection of the n-randomly applied signal frequencies from 185 Hz to 20 MHz, the inset is the frequency-domain spectra from 185 Hz to 900 Hz

下载图片 查看所有图片

图10为SNR与施加信号频率的关系曲线。当频率小于2 MHz时,SNR随着频率的增加呈现上升趋势。当频率接近2 MHz时,输出信号具有最大SNR。当振动频率高于2 MHz时,输出信号的SNR逐渐降低。从图中可以看出,当振动信号频率为20 MHz时,SNR最小,~9.68 dB。当振动信号频率为2 MHz时,SNR最大,~53.56 dB,达到最佳工作点。

图 10. SNR与施加信号频率的关系曲线

Fig. 10. The measured relationship between frequency of applied vibration signal and SNR

下载图片 查看所有图片

图11(a)为PZT的驱动电压在1 V~10 V之间变化,振动频率为80 kHz条件下测试的振动信号时域图。驱动电压越大,测试的输出信号的幅值越大。图11(b)为测试的振动信号幅值和驱动电压值之间的关系,线性度为0.999,实现振动信号和驱动电压值之间的相互解调,解调灵敏度为0.72 mV/V。

图 11. 不同驱动电压下测试的输出振动信号。(a)时域谱;(b)输出振动信号幅值与驱动电压的关系

Fig. 11. Measured vibration signals with different amplitudes. (a) The time-domain spectra ; (b) measured vibration amplitudes versus driving voltage amplitudes

下载图片 查看所有图片

4.3 阻尼振动传感与声音识别

通过敲击信号,基于ORCP实现阻尼振动测试。图12(a)为连续敲击时获得的输出振动信号时域谱,对应的FFT频谱如图12(b)所示。当施加敲击信号后,ORCP输出振动信号的强度逐渐降低并趋于稳定,形成阻尼振荡。检测到的基频为~34 Hz,SNR为~12.51 dB,可知,该ORCP可实现阻尼振动信号的检测。

图 12. 基于ORCP-FVS的敲击阻尼振动测试。(a)时域谱;(b)对应的频域谱

Fig. 12. Measured damped vibration response of the ORCP-FVS. (a) Time-domain spectra; (b) frequency-domain spectra

下载图片 查看所有图片

实验中利用扬声器发出不同音乐,包括“chiled”“carton”“bounce”,加载至ORCP的悬空耦合区,记录其输出光谱的变化,实现对不同声信号的识别。图13(a)为不同音乐对应的输出时域谱,不同声音信号下,监测的信号幅值ΔV不同,分别为2 mV、3 mV以及11 mV。图13(b)为对应的频谱图,每个音调对应特征共振峰,即在频谱中增强功率的位置,根据不同特征峰的位置,实现对不同声信号的识别。

图 13. 基于ORCP-FVS的语音识别测试结果。(a)加载不同声音对应的输出时域谱;(b)对应的频域谱

Fig. 13. The measured speech recognition results of ORCP-FCS. (a) The measured time-domain spectra with different sounds; (b) the corresponding frequency-domain spectra

下载图片 查看所有图片

为对比明显,将所提ORCP-FVS性能与之前报道过的基于不同类型光纤结构的FVS进行比较,包括SNR、FR以及振动方式,结果如表2所示。

表 2. 不同类型光纤振动传感器的性能比较

Table 2. Performance comparisons of different FVSs

StructureSNR /dBFRVibration methodReference
SMF-PCF-SMF501 Hz-20 kHzVibration exciter19
SMF-BIF-SMF401 Hz-500 kHzPZT25
SMF-NCF-SMF50100 Hz-29 kHzPZT26
ORCP-FVS53.56185 Hz-20 MHzPZTPropsed work

查看所有表

所提传感器对曲率和振动交叉不敏感。与弯曲信号不同,振动信号是一个实时、连续的变化量,当振动信号加载于ORCP结构耦合区域,不会引起反射光谱的漂移。通过BBS以及OSA,基于ORCP反射光谱波长的漂移以及光谱强度的变化,实现曲率传感测试(图6图7)。通过TLS以及PD、OSC,基于ORCP反射光谱波节点处强度的波动,实现振动传感测试(图9~13)。

5 稳定性测试

图14为ORCP的温度交叉敏感以及稳定性测试结果。图14(a)为ORCP在不同温度下的输出光谱,插图分别为波长在1532 nm以及1558 nm附近的细节放大图。随着温度由22 ℃逐渐增加至80 ℃,光谱产生少量漂移。图14(b)为不同dip处温度与光谱波长关系图,可知,温度变化58 ℃对应的波长变化量Δλ为~0.2 nm。该ORCP具有较低的温度交叉敏感性能。图14(c)是1 h内测量的ORCP反射光谱,插图分别是1532 nm和1558 nm附近波长漂移细节放大图。图14(d)显示了1 h内测量的波长波动,波长偏移Δλ约为±0.01 nm,表明该ORCP具有较高的稳定性。

图 14. ORCP的稳定性测试。(a)不同温度下的反射光谱;(b)温度与波长对应关系;(c)1 h内的反射光谱;(d)1 h内光谱波长漂移的变化

Fig. 14. The measured stability of the ORCP. (a) The measured reflection spectra with different temperature; (b) the corresponding relationship between temperature and wavelength; (c) the measured reflection spectra within 1 h; (d) the wavelength fluctuation within 1 h

下载图片 查看所有图片

该传感器的探针结构尺寸为mm级别,结构紧凑,采用反射光谱解调传感物理量,光源和光谱测试仪器处于同一端,可实现曲率与振动双参量传感,可应用于包括结构机械运行、民用基础设施的健康监测以及在油田、煤矿等受限空间与恶劣环境领域中,甚至实现自然灾害的预测。与此同时,所提ORCP传感器具有独特的“探针式”结构,可以穿透某些痕量溶液并能够在微小空间内操作,在燃料储存、化学液位测量、生物分子结合领域具有广泛的应用前景。针对实际传感探头对洁净度和环境扰动的要求,还需要改善。

6 结 论

首次提出并研究一种基于ORCP的高灵敏曲率和振动双参量传感器。通过熔融拉锥、耦合方法结合垂直切割技术,在耦合区域构建菲涅耳反射端面,制成ORCP,实现对曲率和振动两种物理量的高灵敏度测试。对于曲率传感测试,灵敏度高达11.97 nm/m-1,曲率测量范围为0~10.49 m-1,线性度大于0.98。对于振动传感测试,ORCP实现了185 Hz~20 MHz的超宽带频率响应范围,具有高保真度以及高线性度,SNR高达~53.56 dB。此外,该传感器可实现阻尼振动信号的检测以及声音识别,具有较高的稳定性和较低的温度交叉敏感。由于该传感器具有灵敏度高、响应范围宽、线性度好、稳定性高、保真度高等优势,探针尺寸为mm级别,结构紧凑,在结构健康监测和环境评估中具有潜在的应用价值。

参考文献

[1] Liu K J, Luo B B, Wu D C, et al. Broadband vibration sensor using reflected excessively tilted fiber grating with clamped beam[J]. IEEE Photonics Technology Letters, 2021, 33(8): 379-382.

[2] 姜宗福, 习锋杰, 许晓军, 等. 光栅型波前曲率传感器原理和应用[J]. 中国激光, 2010, 37(1): 205-210.

    Jiang Z F, Xi F J, Xu X J, et al. Theory and applications of defocus grating wavefront curvature sensing[J]. Chinese Journal of Lasers, 2010, 37(1): 205-210.

[3] 张乐, 吴波, 叶雯, 等. 基于光纤光栅法布里-珀罗腔锁频原理的高灵敏度光纤振动传感器[J]. 光学学报, 2011, 31(4): 0406006.

    Zhang L, Bo W, et al. Highly sensitive fiber-optic vibration sensor based on frequency-locking of a FBG Fabry-Perot cavity[J]. Acta Optica Sinica, 2011, 31(4): 0406006.

[4] Cheng H H, Wu S, Wang Q, et al. In-line hybrid fiber sensor for curvature and temperature measurement[J]. IEEE Photonics Journal, 2019, 11(6): 6803311.

[5] Dong S D, Dong B, Yu C Y, et al. High sensitivity optical fiber curvature sensor based on cascaded fiber interferometer[J]. Journal of Lightwave Technology, 2018, 36(4): 1125-1130.

[6] 付广伟, 李颀峰, 李昀璞, 等. 温度不敏感的错位熔接-粗锥型光子晶体光纤曲率传感器[J]. 光学学报, 2016, 36(11): 1106007.

    Fu G W, Li Q F, Li Y P, et al. Temperature insensitive curvature sensor of photonic crystal fiber based on core-offset splicing and waist-enlarged fiber taper[J]. Acta Optica Sinica, 2016, 36(11): 1106007.

[7] Zhu F X, Zhang Y D, Qu Y C, et al. Self-assembled vector curvature sensor based on vernier effect[J]. IEEE Sensors Journal, 2022, 22(7): 6586-6592.

[8] Novais S, Silva S O, Frazão O. A self-referencing intensity-based Fabry–Perot cavity for curvature measurement[J]. IEEE Sensors Letters, 2019, 3(10): 3501704.

[9] Guo Y, Zhang Y D. A new bamboo-shaped sensor for curvature measurement with microstructured fiber[J]. IEEE Photonics Technology Letters, 2021, 33(12): 619-622.

[10] Wei Y, Liu C B, Liu C L, et al. Multichannel directional recognition SPR curvature sensor based on D-type double-clad multimode fiber[J]. IEEE Sensors Journal, 2022, 22(22): 21719-21726.

[11] Sun H, Yang S, Zhang X L, et al. Simultaneous measurement of temperature and strain or temperature and curvature based on an optical fiber Mach-Zehnder interferometer[J]. Optics Communications, 2015, 340: 39-43.

[12] Dass S, Jha R. Micrometer wire assisted inline Mach-Zehnder interferometric curvature sensor[J]. IEEE Photonics Technology Letters, 2016, 28(1): 31-34.

[13] Ni W J, Lu P, Fu X, et al. Ultrathin graphene diaphragm-based extrinsic Fabry-Perot interferometer for ultra-wideband fiber optic acoustic sensing[J]. Optics Express, 2018, 26(16): 20758-20767.

[14] Zhou L Y, He J Q, Li W Z, et al. Butterfly wing hears sound: acoustic detection using biophotonic nanostructure[J]. Nano Letters, 2019, 19(4): 2627-2633.

[15] Chen Y F, Wan H D, Lu Y, et al. An air-pressure and acoustic fiber sensor based on graphene-oxide Fabry-Perot interferometer[J]. Optical Fiber Technology, 2022, 68: 102754.

[16] Chen Y F, Wan H D, Lu Y, et al. Highly sensitive twist and vibration sensing based on polarization-sensitive mode selective coupler[J]. Optical Engineering, 2022, 61(8): 086109.

[17] Jiang C, Liu Y Q, Mou C B. Polarization-maintaining fiber long-period grating based vector curvature sensor[J]. IEEE Photonics Technology Letters, 2021, 33(7): 358-361.

[18] Tan S J, Li Y P, Liu T, et al. A large measurement range bending sensor based on microfiber probe[J]. IEEE Photonics Technology Letters, 2019, 31(24): 1964-1967.

[19] Yu H H, Luo Z Z, Zheng Y, et al. Temperature-insensitive vibration sensor with Kagomé hollow-core fiber based Fabry–Perot interferometer[J]. Journal of Lightwave Technology, 2019, 37(10): 2261-2269.

[20] Sui G H, Liu H H, Pang F F, et al. Broadband acoustic vibration sensor based on cladding-mode resonance of double-cladding fiber[J]. Photonic Sensors, 2019, 9(3): 230-238.

[21] Qin S P, Lu J Y, Yu Y, et al. Magnetic field and temperature two-parameter sensor based on optical microfiber coupler interference (OMCI) wrapped with magnetic fluid and PDMS[J]. Optics Express, 2021, 29(18): 29492-29504.

[22] Ding M, Wang P F, Brambilla G. A microfiber coupler tip thermometer[J]. Optics Express, 2012, 20(5): 5402-5408.

[23] Li K W, Zhang N, Zhang N M Y, et al. Birefringence induced Vernier effect in optical fiber modal interferometers for enhanced sensing[J]. Sensors and Actuators B: Chemical, 2018, 275: 16-24.

[24] Li H Y, Wang Z, Liu Y G, et al. FFT algorithm-assisted polarimetric twist sensor[J]. IEEE Photonics Technology Letters, 2017, 29(23): 2083-2086.

[25] Xu Y P, Lu P, Qin Z G, et al. Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer[J]. Optics Express, 2013, 21(3): 3031-3042.

[26] Ran Y L, Xia L, Han Y, et al. Vibration fiber sensors based on SM-NC-SM fiber structure[J]. IEEE Photonics Journal, 2015, 7(2): 6800607.

陈彧芳, 万洪丹, 顾宇, 常洪强, 沈展羽, 汪静丽, 胡芳仁. 基于光反射式耦合探针的高灵敏曲率与振动双参量传感器[J]. 光学学报, 2023, 43(21): 2128001. Yufang Chen, Hongdan Wan, Yu Gu, Hongqiang Chang, Zhanyu Shen, Jingli Wang, Fangren Hu. Highly Sensitive Curvature and Vibration Dual-parameter Sensor Based on Optical Reflective Coupler Probe[J]. Acta Optica Sinica, 2023, 43(21): 2128001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!