中国激光, 2023, 50 (13): 1304002, 网络出版: 2023-07-05  

高强度聚焦超声声压测量中非线性声场对激光干涉系统带宽的影响

Influence of Nonlinear Sound Field on Bandwidth of Laser Interferometry Systems in High‑Intensity Focused Ultrasound Pressure Measurements
作者单位
中国计量科学研究院力学与声学计量科学研究所,北京 100029
摘要
针对激光干涉法高强度聚焦超声(HIFU)声压测量中干涉系统带宽解算依赖线性声场条件,导致解算结果与实际有较大差异的问题,首先通过理论分析,建立了HIFU声压测量中干涉信号的数理模型;针对非线性声场条件下干涉信号无法进行函数展开的情况,利用数值仿真的方法对干涉信号的频域进行分析;通过对比具有相同声压峰峰值和基频的线性和非线性声场条件下的干涉信号频谱,发现了非线性声场对激光干涉信号带宽的展宽作用,证明了现有线性声场条件下干涉系统带宽的估算方法不适用于HIFU声压测量;利用实测HIFU声压数据,通过仿真分析,发现在非线性声场条件下,激光干涉系统带宽随被测声压峰峰值呈二次方规律变化,而不是线性声场条件下的线性变化规律。
Abstract
Objective

High-intensity focused ultrasound (HIFU) is a non-invasive medical thermal ablation technology that can realize the “non-invasive” treatment of diseases. It is developing into a standard tumor treatment method. The accurate measurement of the HIFU sound pressure is very important for formulating clinical schemes involving HIFU treatment and ensuring the safety and effectiveness of the treatment. Laser interferometry has been adopted by new-generation sound pressure benchmarks because of its high precision, non-contact characteristic, and direct traceability to the length benchmark. The bandwidth of a laser interference system directly affects the upper limit of sound pressure measurements. Current methods of estimating system bandwidth are based on linear sound field conditions; however, with an increase in the measured sound pressure, the HIFU field will become nonlinear, leading to a deviation between the system bandwidth requirements and the model solution results. Aiming to address the problem of bandwidth calculation of interference systems for HIFU sound pressure measurement, this study theoretically analyzes a mathematical model of interference system bandwidth and vibration signal in HIFU sound pressure measurement, refers to the measured sound pressure value, and establishes the relationship between interference system bandwidth and sound pressure by numerical simulation.

Methods

According to the mathematical relationship between sound particle vibration and interference signal, a bandwidth model of interference signals under the condition of a nonlinear sound field is established. Because the interference signal is expressed as a nonelementary function that cannot be expanded by the Bessel function, the bandwidth of the interference signal under the condition of a nonlinear sound field is analyzed by numerical simulation. The simulation results show that compared with that in a linear sound field, the interference signal spectrum in a nonlinear sound field is not symmetrically distributed centered on the carrier frequency but widened and shifted. In order to obtain the real HIFU sound pressure and ensure that the simulation results are closer to the actual values, the HIFU sound field is measured using the optical fiber hydrophone, and the sound pressure waveforms and frequency domain distributions corresponding to different sound pressures are obtained. According to the waveform parameters of the sound pressure, the simulation conditions of the interference signal bandwidth are set, and the bandwidths of the interference systems required by different sound pressures are obtained.

Results and Discussions

Using the measured sound pressure data of the HIFU sound field, the relationship between the bandwidth of the heterodyne interference system and HIFU sound pressure is simulated. Under the condition that the relative error of the sound pressure measurement caused by the system bandwidth is less than 2%, the corresponding relationship between the lowest bandwidth of the heterodyne interference system and the peak value of the measured sound pressure is determined. Through curve fitting, it is deduced that quadratic fitting has a smaller fitting error than linear fitting. Therefore, it is inferred that under the condition of a nonlinear sound field, the bandwidth requirement of the heterodyne interferometry system changes via a quadratic law with the peak-to-peak of the measured sound pressure, which means that the bandwidth requirement of the heterodyne interferometry system will increase sharply with a higher intensity sound pressure measurement. When the peak value of the measured HIFU sound pressure reaches 60 MPa, the bandwidth of the heterodyne interferometry system should not be less than 473 MHz; thus, the sound pressure measurement error introduced by the system bandwidth can be less than 2%. Here, if the calculation is carried out according to linear sound field conditions, the system bandwidth in the same case is not less than 130 MHz, which obviously differs considerably from the actual situation and causes a large measurement error.

Conclusions

This study focuses on the problem that the bandwidth solution of the interference system in HIFU sound pressure measurement by laser interferometry depends on the linear sound field conditions, which causes a large difference between the solution results and reality. First, through theoretical analysis, a mathematical model of the interference signal for HIFU sound pressure measurement is established. The frequency domain of the interference signal is analyzed by numerical simulation. It is inferred that the spectrum of the interference signal under the condition of a nonlinear sound field is widened and shifted compared with that under the condition of a linear sound field. It is proved that existing methods for estimating the interference system bandwidth under the condition of a linear sound field are not suitable for HIFU sound pressure measurements. Combined with the HIFU sound pressure measurement data, the relationship between the bandwidth requirements of the heterodyne interference system and the peak value of the sound pressure is simulated and analyzed. The analysis results show that under the condition of a nonlinear sound field, the bandwidth requirements of the heterodyne interference system change via a quadratic law with the peak-to-peak value of the sound pressure.

1 引言

高强度聚焦超声(HIFU)治疗是一种非侵入性的医疗热消融技术,高强度聚焦超声束穿过软组织,在聚焦区域快速产生高温,使得病变靶区组织凝固坏死,从而实现疾病的“无创”治疗,该技术正发展成为标准肿瘤治疗方法的选择之一1。HIFU声压的精准计量对于制定HIFU治疗临床方案及保障治疗安全性和有效性至关重要2-3。激光干涉法凭借其高精度、非接触、可直接溯源至长度基准4-5等优势,被新一代水声声压基准所采用6-9。激光干涉法利用与声轴方向垂直的透声反光薄膜获取声场中水介质的振动信息,当薄膜厚度远小于声波波长时,认为薄膜跟随周围水介质振动。激光干涉系统测得薄膜上某一点的振动位移,再根据质点位移与声压的数理关系即可得到该点处的声压。

激光干涉系统的带宽大小直接影响了声压测量的上限。在激光干涉位移测量领域,通常用多普勒频移描述被测对象对干涉系统的带宽要求,在位移方向不变的情况下,系统带宽大于最大多普勒频移即可满足测量要求。在超声振动测量领域,由于质点振动速度的大小和方向变化迅速,多普勒频移随时间变化的影响不可忽略,最大多普勒频移与系统带宽的对应关系不再成立。在线性声场中,质点振动近似为简谐振动形式,对应的干涉信号为coszcosf非初等函数形式,其中,z为振幅的函数,f为振动频率的函数。

为了描述上述声压大小与激光干涉系统带宽的关系,Barrière等10-11对线性声场作用下的干涉信号进行第一类贝塞尔函数展开,发现质点振动信号在干涉信号频域得到展宽,出现了振动频率的多次谐波,其对应的幅值系数为各阶贝塞尔函数JNzN为阶数),干涉信号带宽取决于不可忽略的阶数最大的第Nmax次谐波;通过引入适当的判定系数,得到了声压大小和振动频率与系统带宽的关系。目前基于激光干涉法的声压测量系统多采用该方法对干涉系统带宽进行估算。

上述模型基于线性声场条件,但是随着被测声压的增加,高强度聚焦超声场会出现非线性,质点振动将不再是简谐振动的形式,这就造成了系统带宽与模型解算结果的偏差。因此,在基于激光干涉法的HIFU声压测量中,仍存在干涉系统带宽解算方法尚不完善的问题。

本文针对HIFU声压测量中干涉系统带宽解算问题,通过理论分析HIFU声压测量中干涉系统带宽与振动信号的数理模型并参考实测声压值,利用数值仿真得到干涉系统带宽与声压的关系。

2 HIFU声压测量中激光干涉系统带宽分析

激光干涉系统的光谱带宽可根据多普勒效应,通过被测振速与光频率的关系计算得到,光谱带宽的计算与被测振动的形式无关,且不是限制系统带宽的主要因素,因此该部分不展开论述。本文所指的激光干涉系统带宽主要是光电转换之后的电信号处理部分的带宽,该部分带宽受到被测振动形式即声场非线性的影响,是本文分析的重点。

2.1 HIFU声压测量中的激光干涉信号

基于激光干涉法的HIFU声压测量装置如图1所示。HIFU换能器和透声反光薄膜放置在水介质中,激光干涉系统与超声换能器分处薄膜两侧,调节测量光束与声轴同轴且垂直于透声反光薄膜。当薄膜厚度远小于声波波长时,可以认为薄膜完全跟随质点振动。测量光束透过光学窗口,测得薄膜位移后,即可得到该点的声压。

图 1. 基于激光干涉法的HIFU声压测量装置

Fig. 1. HIFU sound pressure measuring device based on laser interferometry

下载图片 查看所有图片

以二细分的零差干涉光路为例进行分析,干涉信号It可以表示为

It=Acos2πλ2xt+φ0

式中:t为时间;λ为激光波长;A为信号幅值;xt为振动位移;φ0为初始相位。

在线性声场条件下,声压大小即薄膜振动随时间呈正弦规律变化,xt仅包含基频振动,即

xt=a1cos2πf1t+φ1

式中:a1为振幅;f1为振动频率;φ1f1频率分量对应的初始相位。将式(2)代入式(1),并令z=4πλa1,可得

It=coszcos2πf1t+φ1+φ0=cos φ0coszcos2πf1t+φ1-sin φ0sinzcos2πf1t+φ1

因此可以得到贝塞尔函数展开形式为

It=Acos φ0J0z+2n=1-1nJ2nzcos2π2nf1t+2nφ1-Asinφ02n=1-1nJ2n-1zcos2π2n-1f1t+2n-1φ1

由此可见,零差干涉信号的频谱包含振动频率f1n次谐波项:直流(DC)、f12f13f14f1……。

同理,外差干涉信号可以表示为

It=Acos2πfct+2πλ2xt+φ0

式中:fc为载波频率。在线性声场条件下,同理可获得其贝塞尔函数展开形式为

It=Acos2πfct+φ0J0z+n=1-1nJ2nzcos2πfc+2nf1t+2nφ1+φ0+cos2πfc-2nf1t-2nφ1+φ0+n=1-1nJ2n-1zcos2πfc+2n-1f1t+2n-1φ1+ φ0+cos2πfc-2n-1f1t-2n-1φ1+φ0

分析式(6)可知,外差干涉信号的频谱以载波频率fc为中心,出现了振动频率f1±n次谐波项:fcfc±f1fc±2f1fc±3f1fc±4f1……。

HIFU声场在高声压下产生非线性效应,声压随时间的变化曲线出现丰富的多次谐波。振动位移xt的频谱出现频率f1的多次谐波,可以表示为

xt=i=1naicos2πfit+φi

式中:fif1的第i次谐波;ai为各谐波幅值;φi为各谐波相位。外差干涉信号可以表示为

It=Acos2πfct+4πλi=1naicos2πfit+φi+φ0

此时,干涉信号无法使用贝塞尔函数展开,且无法直接通过函数展开的方法对其进行频域分析。因此利用数值仿真的方法,对非线性声场条件下的干涉信号带宽进行分析。

2.2 非线性声场条件下激光干涉信号带宽的分析

使用数值仿真软件MATLAB对外差干涉信号带宽进行仿真分析,对比线性声场和非线性声场条件下外差干涉信号带宽的差异。仿真参数设置如下:外差干涉系统的载波频率fc=300 MHz,激光波长λ=632.8 nm,干涉信号幅值A=1,水介质密度ρ=103 kgm-3,水介质中的声速c=1500 ms-1。在线性声场条件下,假设薄膜振动振幅a1=1 μm、振动频率f1=1 MHz、初始相位φ1=0,对干涉信号It进行快速傅里叶变换(FFT),得到的频谱Xf图2(a)所示,各频率分量以振动频率f1为间隔,并以载波频率fc为中心对称分布。

图 2. 线性声场和非线性声场条件下不同干涉信号的频谱

Fig. 2. Spectra of different interference signals under linear and nonlinear sound fields

下载图片 查看所有图片

定义外差干涉信号带宽Bsig,使其满足

ε=fc-Bsig/2fc+Bsig/2Xf02fcXf99%

此时可以认为干涉信号中的有用信息不会丢失,系统不会由于带宽不足而引入测量误差。εBsig的变化如图3中的菱形标记曲线所示,由此可知,干涉信号带宽Bsig大于等于50 MHz。

图 3. εBsig的变化曲线

Fig. 3. ε versus Bsig

下载图片 查看所有图片

在非线性声场条件下,假设薄膜振动包含基频至六次谐波分量,各谐波分量振幅之比为1.00∶0.40∶0.20∶0.10∶0.05∶0.02,且初始相位φi均为零,在其声压峰峰值与线性声场声压峰峰值一致时,外差干涉信号的频谱如图2(b)所示。可以看出:各频率分量仍以振动频率f1为间隔,以载波频率fc为中心对称分布,但相比于图2(a)中的线性声场频谱有了明显的展宽。根据图3中的“*”形标记曲线可知,干涉信号带宽B大于等于58 MHz。

在上述非线性声场条件的基础上,改变各谐波分量的初始相位,使得φ1=0φ2=20°φ3=40°φ4=60°φ5=80°φ6=100°,同理得到的干涉信号频谱如图2(c)所示。相比于图2(b),该频谱不再以fc为中心对称分布,且整体向坐标轴右侧平移,通过图3中的“+”形标曲线可知,此时干涉信号带宽Bsig大于等于62 MHz,相比于线性声场条件增加了24%。

为了获取真实的HIFU声压,使仿真结果更接近实际,本文利用光纤水听器对HIFU声场进行测量,HIFU换能器的激励频率设置为1 MHz。实验测得声压随时间的变化曲线如图4(a)所示,声压峰峰值约为30 MPa;对其进行FFT运算得到相应的频域幅值和相位曲线,如图4(b)所示。

图 4. 光纤水听器测得的HIFU声压。(a)时域波形图;(b)频域波形图

Fig. 4. HIFU sound pressure measured by optical fiber hydrophone. (a) Time domain waveform; (b) frequency domain waveform

下载图片 查看所有图片

根据上述实验获取声压各次谐波的参数,设置外差干涉系统带宽仿真条件,并忽略振动位移中三十次以上的谐波分量。同时,作为对比,对具有相同声压峰峰值的线性声场的情况进行仿真。仿真结果如图5所示,可以看出:非线性声场的干涉信号频谱与线性声场的干涉信号频谱有明显差异,线性声场干涉信号带宽Bsig大于等于78 MHz,而非线性声场干涉信号带宽Bsig大于等于148 MHz,增加了89.7%。

图 5. 线性声场和非线性声场条件下干涉信号带宽仿真结果。(a)线性声场频谱;(b)非线性声场频谱;(c)εBsig的变化曲线

Fig. 5. Simulation results of interference signal bandwidths under linear and nonlinear sound fields. (a) Spectrum under linear sound field; (b) spectrum under nonlinear sound field; (c) ε versus Bsig

下载图片 查看所有图片

2.3 激光外差干涉系统带宽与被测声压大小的关系分析

理想情况下外差干涉系统为全通系统,系统带宽Bsis可以认为无限大,对声压测量结果没有影响。在实际情况中,外差干涉系统表现为带通或低通,为了方便分析,默认外差干涉系统是中心频率为光学载波频率fc的带通系统。在数值仿真中,设计了阶数为5000、中心频率为fc的有限长单位冲击响应(FIR)带通滤波器以模拟外差干涉系统带宽Bsis,通过与理想情况下的声压测量结果进行对比,得到干涉系统带宽Bsis对声压测量结果的影响。被测声场的声压参数设置与图5非线性声场情况相同,并将外差干涉系统带宽Bsis设置为100 MHz,此时干涉信号的时域和频域曲线以及由此测得的时域声压曲线如图6所示。

图 6. 外差干涉系统带宽变化对干涉信号和声压测量结果的影响。(a)干涉信号时域曲线;(b)干涉信号频域曲线;(c)测量得到的声压曲线

Fig. 6. Influence of bandwidth variation of heterodyne interference system on interference signal and sound pressure measurement result. (a) Time domain curve of interference signal; (b) frequency domain curve of interference signal; (c) measured sound pressure curves

下载图片 查看所有图片

图6(a)、(b)可以看出:由于外差干涉系统带宽Bsis小于非线性声场条件下的干涉信号带宽,系统对干涉信号的滤波效应明显,在干涉信号时域上表现为信号幅值的波动,在频域上表现为350 MHz以上频段的截止。图6(c)所示的被测声压曲线表明:被测声压的正峰值声压(p+)和负峰值声压(p-)相较于全通干涉系统均有较大偏差。

进一步,通过改变外差干涉系统带宽Bsis的大小,得到非线性声场条件下声压测量误差随Bsis的变化曲线,如图7(a)所示。外差干涉系统带宽Bsis在120 MHz以下时,声压测量的相对误差较大;Bsis大于120 MHz时,正峰值、负峰值和峰峰值声压(ppp)的相对误差明显减小,其中,正峰值声压的相对误差较大,最大值约为7%。若要使得系统带宽引起的声压测量相对误差小于2%,外差干涉系统带宽Bsis应大于161 MHz。

图 7. 声压测量相对误差随外差干涉系统带宽的变化曲线。(a)非线性声场;(b)线性声场

Fig. 7. Relative error of sound pressure measurement versus bandwidth of heterodyne interference system. (a) Nonlinear sound field; (b) linear sound field

下载图片 查看所有图片

同理,将声压参数设置为图5中线性声场的情况时,声压测量相对误差随外差干涉系统带宽的变化曲线如图7(b)所示。可以看出,正峰值、负峰值和峰峰值声压相对误差的变化规律一致。这是由于系统带宽对线性声场的正声压和负声压部分的影响效果相同。若使线性声场条件下系统带宽引起的声压测量相对误差小于2%,外差干涉系统带宽Bsis应大于70 MHz。

利用光纤水听器测得的多组HIFU声场声压数据,对外差干涉系统带宽Bsis与HIFU声场峰峰值声压ppp的关系进行仿真。在系统带宽引起的声压测量相对误差小于2%的条件下,外差干涉系统带宽最低值与被测声压峰峰值的关系曲线如图8(a)所示。其中,菱形数据点为非线性声场条件下峰峰值声压所需的系统带宽大小,圆形数据点为线性声场条件下所需的系统带宽大小,可以看出,随着声压的提高,非线性声场条件下二者的差异有逐渐增大的趋势。对上述数据点进行线性拟合,如图8(a)中点状线和虚线所示,可以看出:线性声场条件下的线性拟合情况较好,其线性相关系数为0.9998;非线性声场条件下的线性拟合情况稍差,其线性相关系数为0.9928。对非线性声场条件下的数据进行了二次拟合,拟合表达式为

Bsis=0.0924ppp2+2.23ppp+6.93

式中:Bsis的单位为MHz;ppp的单位为MPa。拟合曲线如图8(a)中点划线所示,通过对比发现:二次拟合相比于一次拟合具有更小的拟合误差,因此认为二次拟合更符合实际情况。

图 8. 外差干涉系统带宽随被测声压峰峰值的变化曲线。(a)声压测量的相对误差小于2%时;(b)非线性声场下不同相对误差要求的二次拟合曲线

Fig. 8. Bandwidth of heterodyne interference system versus peak-to-peak value of measured sound pressure. (a) When relative error of sound pressure is less than 2%; (b) quadratic fitting curves with different relative error requirements under nonlinear sound field

下载图片 查看所有图片

同理,当外差干涉系统带宽引起的声压测量相对误差小于1%和5%时,在非线性声场条件下,外差干涉系统带宽随被测声压峰峰值变化的二次拟合曲线如图8(b)所示。可以看出,随着相对误差要求的提高,需要相应提高干涉系统带宽。

综合上述仿真分析可知,在线性声场条件下,外差干涉系统带宽随被测声压峰峰值呈线性规律变化,这与以往的研究结论是相符的;在非线性声场条件下,外差干涉系统带宽则随被测声压峰峰值呈二次方规律变化,这就意味着更高强度的声压测量对外差干涉测量系统带宽的要求激增。按此规律推论,当被测HIFU声压峰峰值达到60 MPa时,外差干涉测量系统的带宽应不小于473 MHz,这样才能使系统带宽引入的声压测量误差小于2%;若按照线性声场条件进行计算,同等情况下的系统带宽不小于130 MHz即可满足要求,这显然与实际情况相差较大。

以上分析以外差干涉系统为例进行展开,由于零差干涉系统可以认为是光学载波频率为0的一种特殊的外差干涉系统,其干涉信号的频谱分量以0为起点向正方向延伸,零差干涉系统实际可近似为低通系统,因此零差干涉系统在带宽上的要求约为外差干涉系统的一半,本文不再详细展开。

3 结论

首先通过理论分析,建立了HIFU声压测量中干涉信号的数理模型;针对非线性声场条件下干涉信号无法进行函数展开的情况,通过数值仿真的方法对干涉信号的频域进行分析;通过对具有相同声压峰峰值和基频的线性和非线性两类声场条件下的干涉信号频谱进行分析,发现非线性声场条件下干涉信号频谱相比于线性声场有不同程度的展宽和平移,证明了现有线性声场条件下干涉系统带宽的估算方法不适用于HIFU声压测量。结合实测HIFU声场声压数据,对外差干涉系统带宽与声压峰峰值之间的关系进行了仿真分析,分析结果表明:在非线性声场条件下,外差干涉系统带宽随着被测声压峰峰值呈二次方规律变化。研究结果为激光干涉法HIFU声场测量系统的带宽设计提供了理论指导和设计依据。

参考文献

[1] Izadifar Z, Izadifar Z, Chapman D, et al. An introduction to high intensity focused ultrasound: systematic review on principles, devices, and clinical applications[J]. Journal of Clinical Medicine, 2020, 9(2): 460.

[2] Martin E, Treeby B. Investigation of the repeatability and reproducibility of hydrophone measurements of medical ultrasound fields[J]. The Journal of the Acoustical Society of America, 2019, 145(3): 1270-1282.

[3] Rajagopal S, Sainsbury T, Treeby B E, et al. Laser generated ultrasound sources using carbon-polymer nanocomposites for high frequency metrology[J]. Journal of the Acoustical, 2018, 144(2): 584-597.

[4] Koukoulas T, Robinson S, Rajagopal S, et al. A comparison between heterodyne and homodyne interferometry to realise the SI unit of acoustic pressure in water[J]. Metrologia, 2016, 53(2): 891-898.

[5] Xing G Z, Wilkens V, Yang P. Review of field characterization techniques for high intensity therapeutic ultrasound[J]. Metrologia, 2021, 58(2): 022001.

[6] Matsuda Y, Yoshioka M, Uchida T. Absolute hydrophone calibration to 40 MHz using ultrasonic far-field[J]. Materials Transactions, 2014, 55(7): 1030-1033.

[7] WangM, KoukoulasT, et al. Measurement of underwater acoustic pressures in the frequency range 25 to 500 kHz using optical interferometry and discussion on associated uncertainties[C]∥25th International Congress on Sound and Vibration, July 8-12, 2018, Hiroshima, Japan. [S.l.: s.n.], 2018.

[8] Feng X J, Yang P, He L B, et al. Influence of the frequency response of the photodetector on the heterodyne interferometer-based sound pressure standards in water[J]. Applied Optics, 2018, 57(32): 9635-9642.

[9] Theobald P D, Robinson S P, Thompson A D, et al. Technique for the calibration of hydrophones in the frequency range 10 to 600 kHz using a heterodyne interferometer and an acoustically compliant membrane[J]. The Journal of the Acoustical Society of America, 2005, 118(5): 3110-3116.

[10] Barrière C, Royer D. Optical measurement of large transient mechanical displacements[J]. Applied Physics Letters, 2001, 79(6): 878-880.

[11] JacobX, BarriereC, TakatsuR, et al. Optical measurement of transient ultrasonic shock waves[C]∥IEEE Ultrasonics Symposium, August 23-27, 2004, Montreal, QC, Canada. New York: IEEE Press, 2004: 52-55.

王珂, 杨平, 邢广振. 高强度聚焦超声声压测量中非线性声场对激光干涉系统带宽的影响[J]. 中国激光, 2023, 50(13): 1304002. Ke Wang, Ping Yang, Guangzhen Xing. Influence of Nonlinear Sound Field on Bandwidth of Laser Interferometry Systems in High‑Intensity Focused Ultrasound Pressure Measurements[J]. Chinese Journal of Lasers, 2023, 50(13): 1304002.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!