光电工程, 2021, 48 (6): 200398, 网络出版: 2021-09-04  

绝对共轭共聚焦拉曼光谱技术研究

Research on absolute conjugation confocal Raman spectroscopy technology
作者单位
1 中国科学院长春光学精密机械与物理研究所,吉林 长春 130031
2 中国科学院大学,北京 100049
3 长光辰英生物科学仪器有限公司,吉林 长春 130031
摘要
为解决传统拉曼光谱信号强度弱、信噪比低的问题,本文提出一种新型的共聚焦拉曼系统,通过外接光子晶体光纤实现共聚焦点的绝对共轭,总结了光子晶体光纤耦合过程中出现的技术问题,并对实际样品进行测试。与Thorlabs、OZ两种常规共聚焦拉曼系统所用光纤、Witec 532 nm-alpha300R拉曼系统进行比较,在相同激光强度和积分时间下,本文信噪比为73.8382,显著高于Thorlabs、OZ两种光纤的37.1557和40.0342,而相较于Witec 532 nm-alpha300R的65.5312,也提升了12.68%,高质量的拉曼信号使得该绝对共轭共聚焦拉曼系统具有广阔的市场前景和超高的市场竞争力。
Abstract
To solve the problems of weak signal strength and low signal-to-noise ratio in traditional Raman spectroscopy, a new confocal Raman system is proposed in this paper. The absolute conjugation of the confocal point is realized by external photonic crystal fiber. The technical problems in the coupling process of photonic crystal fiber are summarized, and the actual samples are tested. Compared with conventional confocal Raman fibers such as Thorlabs and OZ and Witec 532 nm-alpha300R Raman system, the signal-to-noise ratio in this paper is 73.8382 at the same laser intensity and integration time, which is significantly higher than that of Thorlabs and OZ (37.1557 and 40.0342, respectively). Compared with the signal-to-noise ratio of 65.5312 for Witec 532 nm-alpha300R, it also increased by 12.68%. High-quality Raman signal makes the absolute conjugated confocal Raman system have broad market prospects and ultra-high market competitiveness.
参考文献

[1] Beyssac O, Goffé B, Chopin C, et al. Raman spectra of carbonaceous material in metasediments: a new geothermometer[J]. J Metamorp Geol, 2002, 20(9): 859–871.

[2] Bersani D, Lottici P P. Applications of Raman spectroscopy to gemology[J]. Anal Bioanal Chem, 2010, 397(7): 2631–2646.

[3] Dieing T, Hollricher O, Toporski J. Confocal Raman Microscopy[M]. Berlin, Heidelberg: Springer, 2011.

[4] Stiles P L, Dieringer J A, Shah N C, et al. Surface-enhanced Raman spectroscopy[J]. Annu Rev Anal Chem, 2008, 1: 601–626.

[5] Carey P. Biochemical Applications of Raman and Resonance Raman Spectroscopes[M]. Amsterdam: Elsevier, 2012.

[6] St?ckle R M, Suh Y D, Deckert V, et al. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy[J]. Chem Phys Lett, 2000, 318(1–3): 131–136.

[7] Russell P S J. Photonic band gaps[J]. Phys World, 1992, 5(8): 37–42.

[8] Knight J C, Birks T A, Russell P S J, et al. All-silica single-mode optical fiber with photonic crystal cladding[J]. Opt Lett, 1996, 21(19): 1547–1549.

[9] Cregan R F, Mangan B J, Knight J C, et al. Single-mode photonic band gap guidance of light in air[J]. Science, 1999, 285(5433): 1537–1539.

[10] Chen Y E, Hou L T. Preparation of Yb3+ doped double-clad photonic crystal fiber[J]. Opto-Electron Eng, 2009, 36(2): 62–66. 陈月娥, 侯蓝田. Yb3+掺杂双包层光子晶体光纤制备研究[J]. 光电工程, 2009, 36(2): 62–66.

[11] Zhang X D, Yuan M M, Chang M, et al. Characteristics in square air hole structure photonic crystal fiber[J]. Opto-Electron Eng, 2018, 45(5): 20–28. 张学典, 袁曼曼, 常敏, 等. 正方形空气孔光子晶体光纤特性分析[J]. 光电工程, 2018, 45(5): 20–28.

[12] Wang Q Y, Hu M L, Chai L. Progress in nonlinear optics with photonic crystal fibers[J]. Chin J Lasers, 2006, 33(1): 57–66. 王清月, 胡明列, 柴路. 光子晶体光纤非线性光学研究新进展[J]. 中国激光, 2006, 33(1): 57–66.

[13] Folkenberg J R, Nielsen M D, Mortensen N A, et al. Polarization maintaining large mode area photonic crystal fiber[J]. Opt Express, 2004, 12(5): 956–960.

[14] Polis B, Imiela A, Polis L, et al. Raman spectroscopy for medulloblastoma[J]. Child's Nervous System, 2018, 34(12): 2425–2430.

[15] Lv M L. Baseline correction and noise suppression of Raman spectroscopy[D]. Chengdu: University of Electronic Science and Technology of China, 2017. 吕明磊. 拉曼光谱基线校正与噪声抑制技术研究[D]. 成都: 电子科技大学, 2017.

[16] He Y J, Xie D H, Zhong R F. Research on SG filtering algorithm based on hyperspectral image[J]. J Cap Norm Univ (Nat Sci Ed), 2018, 39(2): 70–75. 何英杰, 谢东海, 钟若飞. 基于高光谱影像的SG滤波算法的研究[J]. 首都师范大学学报(自然科学版), 2018, 39(2): 70–75.

[17] Shang T, Li F, Liu Z J. Numerical analysis of Raman amplifier based on triangular photonic crystal fiber[J]. J Commun, 2008, 29(8): 63–68. 尚韬, 李锋, 刘增基. 基于光子晶体光纤的拉曼放大器特性研究[J]. 通信学报, 2008, 29(8): 63–68.

[18] Chen J M. Extraction of weak raman spectral imaging information and SNR estimation[J]. Digit Technol Appl, 2019, 37(4): 100–103. 陈金敏. 微弱拉曼光谱成像信息提取及SNR估计[J]. 数字技术与应用, 2019, 37(4): 100–103.

[19] Zhang Z M, Chen S, Liang Y Z, et al. An intelligent background‐correction algorithm for highly fluorescent samples in Raman spectroscopy[J]. J Raman Spectrosc, 2010, 41(6): 659–669.

尚林东, 梁鹏, 吴青宜, 肖东洋, 徐立伟, 刘坤香, 李备. 绝对共轭共聚焦拉曼光谱技术研究[J]. 光电工程, 2021, 48(6): 200398. Shang Lindong, Liang Peng, Wu Qingyi, Xiao Dongyang, Xu Liwei, Liu Kunxiang, Li Bei. Research on absolute conjugation confocal Raman spectroscopy technology[J]. Opto-Electronic Engineering, 2021, 48(6): 200398.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!