中国激光, 2024, 51 (5): 0501003, 网络出版: 2024-03-07  

高效率连续波Nd∶YVO4/KGW内腔拉曼激光器

Efficient Continuous-Wave Nd∶YVO4/KGW Intra-cavity Raman laser
盛泉 1,2耿婧旎 1,2李锦辉 3付士杰 1,2,*史伟 1,2,**姚建铨 1,2
作者单位
1 天津大学精密仪器与光电子工程学院,天津 300072
2 天津大学光电信息技术教育部重点实验室,天津 300072
3 东南大学成贤学院,江苏 南京 210088
摘要
报道了基于Nd∶YVO4激光晶体和钨酸钆钾(KGW)拉曼晶体的端面泵浦连续波内腔拉曼激光器,实验研究了基频激光偏振方向对KGW拉曼激光器输出功率、光谱和模式特性的影响。当基频光偏振方向平行于KGW晶体的Nm轴时,901 cm-1拉曼频移增益较高,在36.6 W半导体激光泵浦功率下获得了6.63 W的 1177.3 nm连续波斯托克斯光输出,光光效率和斜效率分别为18.1%和24.7%;而当基频光沿KGW晶体Ng轴偏振时,由于768 cm-1和901 cm-1两条拉曼谱线的竞争以及对应89 cm-1小波数拉曼峰的级联拉曼斯托克斯光起振,拉曼激光器的光谱和功率特性均发生劣化。在实验中还观察到KGW像散的热透镜效应对激光模式产生的影响。
Abstract
Objective

Stimulated Raman scattering (SRS) in the crystalline Raman gain media is a well-established technique for extending the spectral coverage of lasers. However, as a third-order nonlinear process, the SRS suffers a relatively low nonlinear gain and consequently has a high threshold, specifically when operating in a continuous-wave (CW) scheme. The intra-cavity pump scheme, in which the Raman crystal is located within the fundamental laser cavity, is an effective alternative to achieve efficient CW Raman output with moderate primary pump power because the high circulating fundamental laser power in the cavity generates sufficient Raman gain. To date, the highest CW Stokes output power of end-pumped intra-cavity Raman lasers has been realized with the self-Raman scheme, in which the processes of lasing and SRS take place in one crystal to minimize insertion losses. However, intra-cavity Raman lasers with separate lasers and Raman gain media have the advantages of a more flexible output wavelength and distributed thermal load, which are helpful for power scaling. This study presents an efficient CW Nd∶YVO4/KGW intra-cavity Raman laser. The output power of the CW Stokes wave at 1177 nm reaches 6.63 W under an incident laser diode (LD) pump power of 36.6 W, with the corresponding optical efficiency being 18.1%.

Methods

The experimental setup of the CW intra-cavity Raman laser is shown in Fig. 1. A 15 mm long a-cut Nd∶YVO4 crystal and a 20 mm long Np-cut KGW crystal serve as the fundamental laser and Raman gain media, respectively. The LD pump wavelength is 878.6 nm, and the pump beam radius at the laser crystal is 280 μm. The Nd∶YVO4 crystal has a low doping atomic fraction of 0.2% to alleviate the thermal effect. The 1064 nm fundamental laser cavity is defined by a flat highly reflective (HR) mirror (M1) and a curved HR mirror (M2) with a radius of curvature of 100 mm. The M2 also has a transmissivity of 0.4% at a Stokes wavelength of 1177 nm. A flat dichroic mirror (M3) with HR coating at 1.15-1.18 μm and highly transmissive at 1064 nm is inserted into the cavity to make the Raman Stokes cavity with M2. The lengths of the fundamental and Stokes cavities are 50 mm and 22 mm, respectively.

Results and Discussions

First, the polarization direction of the linearly polarized fundamental frequency light generated by Nd∶YVO4 is parallel to the Nm axis of the KGW crystal (ENm). With this polarization, the Raman gain coefficient of the 901 cm-1 Raman line is over two times larger than that of the 768 cm-1 Raman line. The Stokes output power as a function of incident LD pump power is shown in Fig. 2. The SRS threshold is 7.5 W LD power, and the maximum Stokes output power reaches 6.63 W under the maximum pump power of 36.6 W. Only the first Stokes field at 1177.3 nm is observed during the entire process. The spectral linewidths of the fundamental laser and Stokes wave are 0.08 nm and 0.02 nm at the SRS threshold and are broadened to 0.3 nm and 0.2 nm, respectively, at the maximum power, as shown in Fig. 3. Because of the astigmatic thermal lens in the KGW crystal, the Stokes output beam profile becomes the Hermite-Gaussian (HG) mode at the maximum power, as shown in Fig. 4. We also attempt fundamental polarization parallel to the Ng axis of the KGW crystal. In this case, the laser output power and conversion efficiency are lower than those for ENg. The Stokes output power under the same maximum pump power of 36.6 W is only 4.86 W. We find that the output wavelength contains both 1159 nm and 1177 nm components, which correspond to the 768 cm-1 and 901 cm-1 Raman shifts, respectively, when the pump power exceeds the SRS threshold of 7.5 W. The cascaded Raman Stokes light at 1171 nm and 1189 nm corresponded to the 89 cm-1 Raman shift also occurs at higher pump power, as shown in Fig. 5. The multiline Stokes field decreases the effective Raman gain, whereas the cascaded Raman conversion decreases the interaction between the fundamental Stokes fields. Therefore, the ENm arrangement, in which the 901 cm-1 Raman shift dominates, is more suitable for efficiently generating high-power Stokes outputs with high spectral purity.

Conclusions

In conclusion, we present an efficient CW Nd∶YVO4/KGW intra-cavity Raman laser. The effects of the fundamental laser polarization direction on the power, spectral mode, and transverse mode of the KGW Raman laser are investigated experimentally. When the fundamental polarization distribution is parallel to the Nm axis of the Np-cut KGW crystal, the laser benefits from a higher Raman gain at 901 cm-1 Raman shift. The 6.63 W CW Stokes output at 1177.3 nm is obtained under an incident LD pump power of 36.6 W, with corresponding optical and slope efficiencies of 18.1% and 24.7%, respectively.

1 引言

基于非线性晶体受激拉曼散射(SRS)效应的固体拉曼激光器是拓宽激光辐射波长范围的重要技术途径。SRS过程不受相位匹配条件的限制,在晶体通光波段均可实现拉曼激光输出,目前固体拉曼激光输出波长覆盖了紫外到中红外波段,SRS独特的光束净化效应也有助于产生高光束质量的激光输出1-7

作为三阶非线性效应,SRS过程的非线性增益较低,在连续波运转时这一短板体现得尤为明显。即便使用金刚石等拉曼增益很高的新型非线性晶体,连续波外腔拉曼激光器的阈值仍多在10~20 W水平8-9,因此只有在数十瓦或更高的泵浦功率下才能实现较高的光光效率。为实现拉曼激光器低阈值连续波运转,研究人员经常采用内腔泵浦方式:将拉曼晶体置于基频激光的谐振腔内,利用腔内振荡的高功率基频光产生较高的拉曼增益,能够在瓦级的半导体激光器(LD)泵浦功率下实现拉曼激光器的连续波运转,并高效产生数瓦功率水平的输出10-12。2012年,Lin等13通过双端偏振泵浦Nd∶GdVO4自拉曼激光器获得了4.1 W连续波1173 nm斯托克斯光输出和3.46 W倍频黄光输出。端面泵浦连续波内腔拉曼激光器的最高斯托克斯输出由Fan等10于2016年报道:基于YVO4-Nd∶YVO4-YVO4键合晶体的自拉曼频率变换获得了5.3 W的1176 nm斯托克斯光输出。与自拉曼激光器相比,基于分立激光晶体和拉曼晶体的内腔拉曼激光器尽管插入损耗较大,但不同激光晶体和拉曼晶体的组合使其输出波长选择更为灵活;其热负载分散在两块晶体中,也有助于缓解热效应,提高功率上限。此外,分立晶体允许分离的基频光与斯托克斯光谐振腔设计,方便使用选频器件实现激光波长调谐和线宽控制114-16。2012年,Savitski等17报道了基于高功率侧泵Nd∶YLF基频激光的钨酸钆钾(KGW)内腔拉曼激光器,获得了6.1 W斯托克斯光输出功率,这是连续波内腔拉曼激光器的最高斯托克斯光输出。2019年,Sheng等14在Nd∶GdVO4/BaWO4内腔拉曼激光器的基频光谐振腔内插入标准具控制其光谱线宽,利用SRS过程不受空间烧孔效应影响的特性,实现了3.42 W的1178 nm连续波单频斯托克斯光输出,并将其二次谐波波长调谐至589.16 nm钠信标波长。近期Chen等18-20采用Nd∶YVO4/Nd∶GdVO4等激光晶体和KGW拉曼晶体的组合,实现了578、579、588 nm等多个波长的斯托克斯光倍频输出,连续波倍频黄光和近红外斯托克斯光的输出功率最高分别为6.8 W和3.2 W。

本文采用Nd∶YVO4和KGW分别作为激光和拉曼增益介质,设计搭建了复合腔结构的连续波内腔拉曼激光器,在36.6 W泵浦功率下获得了6.63 W的1177.3 nm一阶斯托克斯光输出。实验详细对比了基频光偏振方向对KGW拉曼激光器光谱、功率和模式特性的影响,发现基频光沿KGW晶体的Nm轴偏振更易于实现高效、单一波长的拉曼输出。

2 实验装置

图1给出了内腔拉曼激光器的光路示意图。泵浦源为光纤耦合输出的878.6 nm稳波长半导体激光器,光纤纤芯直径为200 μm、数值孔径为0.22。光纤输出的泵浦光经过耦合透镜组聚焦至激光晶体的前表面,泵浦光斑半径为280 μm。所用激光晶体为沿a轴切割的Nd∶YVO4晶体,掺杂物原子数分数0.2%,尺寸为3 mm×3 mm×15 mm;晶体两端镀有878.6 nm和1064 nm增透膜系;使用低掺杂浓度的晶体有助于缓解热效应,应用于更高的泵浦功率情况,实测无激光状态下该晶体对入射非偏振泵浦光的吸收率为~79%。1064 nm基频激光的谐振腔由一片平面镜(M1)和一片曲率半径为100 mm的凹面镜(M2)组成:M1镀有878.6 nm增透、1064 nm高反膜系,对1.18 μm斯托克斯光的透过率为~50%,M2镀有1064 nm高反膜系;M2同时也作为斯托克斯光输出镜,对1.18 μm附近波长有部分透过(透过率T=0.4%)。拉曼增益介质为沿Np轴切割的KGW晶体,尺寸为3 mm×3 mm×20 mm,晶体两端镀有1064 nm基频光和1.18 μm斯托克斯光增透膜系。考虑Nd∶YVO4晶体的890 cm-1拉曼谱线具有较强的增益,为避免其起振与KGW的拉曼斯托克斯光形成竞争,在Nd∶YVO4晶体和KGW晶体之间插入镀有1064 nm增透和1.18 μm高反膜系的平面二向色镜(M3),与输出镜M2构成拉曼斯托克斯光谐振腔。基频光谐振腔(M1-M2)和斯托克斯光谐振腔(M3-M2)的长度分别为50 mm和22 mm。实验中Nd∶YVO4晶体和KGW晶体均用铟箔包裹后置于水冷铝制夹具中,水温为20 ℃。在Nd∶YVO4晶体与M3镜之间插入一个直径为2 mm的光阑,用于遮挡未被完全吸收的LD泵浦光;在M2镜后放置一片1100 nm长通滤光片,滤除残余泵浦光和漏出的少量1064 nm基频光。

图 1. 实验光路示意图

Fig. 1. Schematic of experimental light path

下载图片 查看所有图片

3 实验结果与讨论

KGW为双轴晶体,不同方向的拉曼谱区别很大。实验中首先令Nd∶YVO4产生的线偏振基频光偏振方向平行于KGW晶体的Nm轴(ENm),此时频移901 cm-1的拉曼谱线相比其他谱线更强,其拉曼增益系数gR为~6 cm/GW。图2给出了功率计记录的激光输出功率曲线。SRS阈值为7.5 W(入射LD功率),斯托克斯光起振后KGW晶体中产生明显的蓝色荧光。在36.6 W泵浦功率下斯托克斯光输出功率达到6.63 W,此时光光效率为18.1%,斜效率24.7%。需要说明的是,当泵浦功率为33.4 W、斯托克斯光输出功率为6.19 W时,输出功率随泵浦功率的增长明显变缓,相应的转换效率也下降。考虑到输出镜M2对斯托克斯光的透过率仅为0.4%,此时腔内的单向连续波斯托克斯光功率已超过1.6 kW,为避免器件损伤,实验中没有进一步增加泵浦功率。

图 2. ENm时的激光输出功率和效率曲线

Fig. 2. Laser output power and optical efficiency when ENm

下载图片 查看所有图片

图3给出了光谱仪(分辨率为0.02 nm)记录的基频光和斯托克斯光光谱,其中心波长分别为1064.4 nm和1177.3 nm。实验中斯托克斯光始终仅有中心波长为1177.3 nm的一条谱线,对应1064.4 nm基频光波长和901 cm-1的拉曼频移。如图3(a)、(b)所示,随着泵浦功率从SRS阈值附近提高到其最大值36.6 W,基频光和斯托克斯光的光谱线宽均发生明显展宽,分别由0.08 nm和0.02 nm展宽至~0.3 nm和~0.2 nm。连续波内腔拉曼激光器中的SRS过程对基频光的消耗往往会导致基频光光谱发生明显展宽,进而导致有效拉曼增益系数(gR_eff)下降,影响激光器转换效率15。但对于此处所用的Nd∶YVO4/KGW激光晶体和非线性晶体的组合,KGW晶体的拉曼线宽与Nd∶YVO4的荧光线宽处在可比拟的水平,因此上述基频光谱展宽主要是激光晶体中的空间烧孔导致的。这种程度的光谱展宽也会对有效拉曼增益系数产生明显的影响,采用标准具等器件控制光谱线宽能够提高有效拉曼增益和激光器效率1416

图 3. ENm时激光输出光谱。(a)7.5 W泵浦功率;(b)36.6 W泵浦功率

Fig. 3. Laser spectra when ENm. (a) Pump power of 7.5 W; (b) pump power of 36.6 W

下载图片 查看所有图片

图4给出了电荷耦合器件(CCD)相机在不同功率下记录的典型基频光和斯托克斯光输出光斑。由于实验中激光晶体处的泵浦光尺寸明显大于激光基模光斑尺寸(半径为140~150 μm),基频光起振时即以多模状态运转,如图4(a)所示。在斯托克斯光起振后,基频光光束质量进一步劣化,如图4(b)所示。但由于SRS过程的光谱净化效应,斯托克斯光保持较高的光束质量,如图4(e)所示。随着泵浦功率进一步提升,由于KGW晶体的热透镜效应存在严重的像散21,基频光轮廓逐渐变为椭圆状,且由于基频光中心处的能量与斯托克斯光场的耦合较强,其光强呈中心较弱的分布,如图4(c)所示。在热透镜像散的作用下,斯托克斯输出光斑也被拉长,如图4(f)所示。在最高泵浦功率下,由于热透镜强烈的像散,斯托克斯光以HG0,1模式运转,如图4(g)所示。需要说明的是,椭圆状或HG模式光斑的方向与晶体的光轴(竖直或水平)方向存在一定的夹角,原因在于KGW晶体的热膨胀轴与光轴不重合21

图 4. 不同泵浦功率下的典型基频光和斯托克斯光光斑。(a)~(d)1064.4 nm基频光光斑;(e)~(g)1177.3 nm斯托克斯光光斑

Fig. 4. Typical fundamental and Stokes beam profiles under different pump powers. (a)‒(d) 1064.4 nm fundamental beam profiles; (e)‒(g) 1177.3 nm Stokes beam profiles

下载图片 查看所有图片

作为对比,实验中也测试了基频光偏振方向平行于KGW晶体Ng轴(ENg)时激光器的输出特性。如图5所示,ENg时SRS阈值与ENm时的一致,均为7.5 W。在36.6 W入射泵浦功率下获得的斯托克斯光的最高输出功率为4.86 W,光光效率为13.3%,明显低于ENm时的水平。使用光谱仪记录斯托克斯光光谱,发现在7.5 W SRS阈值下斯托克斯光波长与ENm时的一样,为对应901 cm-1拉曼频移的1177.3 nm;泵浦功率为14.0 W(输出功率为0.63 W)时,对应768 cm-1拉曼频移的1159.2 nm斯托克斯光开始起振。KGW晶体Ng方向的768 cm-1拉曼增益更高,但实验中所用的腔镜和晶体镀膜均是针对1.18 μm斯托克斯光波长优化设计的,1177.3 nm斯托克斯光反而更早起振。由于KGW晶体Ng方向还存在较强的89 cm-1拉曼增益,在泵浦功率超过11.9 W(输出功率为0.45 W)和14.0 W(输出功率为0.80 W)后还分别观察到了波长为1171 nm(对应768 cm-1和89 cm-1拉曼谱线)和1189 nm(对应901 cm-1和89 cm-1拉曼谱线)的级联斯托克斯光成分。最大泵浦功率下斯托克斯光光谱如图6所示,两条斯托克斯光谱线的强度均远低于各自的一阶斯托克斯光强度。斯托克斯光的光谱特性也解释了ENg时拉曼激光器功率和效率更低的原因:一方面1177.3 nm和1159.2 nm两个波长的一阶斯托克斯光分散了拉曼增益,降低了有效拉曼增益系数;另一方面能量从一阶斯托克斯光向级联斯托克斯光转移,降低了基频光与一阶斯托克斯光的相互作用强度,也增大了SRS过程的量子亏损。因此,KGW晶体的Nm偏振方向相比Ng方向更利于高效产生单一波长的拉曼激光输出。

图 5. ENg时的激光输出功率和效率曲线

Fig. 5. Laser output power and optical efficiency when ENg

下载图片 查看所有图片

图 6. ENg时的激光输出光谱(泵浦功率为36.6 W,斯托克斯光输出功率为4.86 W)

Fig. 6. Laser spectrum when ENg with pump power of 36.6 W and Stokes output power of 4.86 W

下载图片 查看所有图片

4 结论

基于复合腔结构的Nd∶YVO4/KGW内腔拉曼激光器实现了高效的斯托克斯光输出,实验研究了基频光偏振方向对拉曼激光器功率和光谱特性的影响。当基频光偏振方向平行于沿Np轴切割的KGW晶体的Nm轴时,在36.6 W泵浦功率下获得了6.63 W的1177.3 nm一阶斯托克斯光输出;而当基频光沿Ng轴偏振时,由于768 cm-1和901 cm-1拉曼谱线的竞争以及对应89 cm-1拉曼谱线的级联斯托克斯光的产生,激光器的输出功率偏低。基频光沿KGW晶体的Nm轴偏振更易于实现高效、单一波长的拉曼输出。实验中还研究了拉曼激光器的模式随功率的变化规律,观察到高功率下KGW晶体像散的热透镜效应使斯托克斯光以HG0,1模式运转的现象。

参考文献

[1] Casula R, Penttinen J P, Guina M, et al. Cascaded crystalline Raman lasers for extended wavelength coverage: continuous-wave, third-Stokes operation[J]. Optica, 2018, 5(11): 1406-1413.

[2] Pask H M, Dekker P, Mildren R P, et al. Wavelength-versatile visible and UV sources based on crystalline Raman lasers[J]. Progress in Quantum Electronics, 2008, 32(3/4): 121-158.

[3] Zhao H, Lin C H, Jiang C, et al. Wavelength-versatile deep-red laser source by intracavity frequency converted Raman laser[J]. Optics Express, 2022, 31(1): 265-273.

[4] Duan Y M, Sun Y L, Zhu H Y, et al. YVO4 cascaded Raman laser for five-visible-wavelength switchable emission[J]. Optics Letters, 2020, 45(9): 2564-2567.

[5] 王金艳, 李世杰, 刘天红, 等. 全固态289.9 nm紫外激光器的研究[J]. 中国激光, 2022, 49(7): 0701001.

    Wang J Y, Li S J, Liu T H, et al. Research on all solid-state ultraviolet laser at 289.9 nm[J]. Chinese Journal of Lasers, 2022, 49(7): 0701001.

[6] 薛瑶瑶, 王春磊, 陈檬. 同步泵浦KGd(WO4)2的反斯托克斯光的研究[J]. 激光与光电子学进展, 2022, 59(1): 0114001.

    Xue Y Y, Wang C L, Chen M. Research on anti-stokes light of synchronously pumped KGd(WO4)2[J]. Laser & Optoelectronics Progress, 2022, 59(1): 0114001.

[7] 房春奇, 于广礼, 丁建永, 等. 基于受激拉曼散射的高效率、大能量1197nm激光器[J]. 中国激光, 2021, 48(20): 2001001.

    Fang C Q, Yu G L, Ding J Y, et al. High-efficiency and high-pulse-energy 1197 nm laser based on stimulated Raman scattering[J]. Chinese Journal of Lasers, 2021, 48(20): 2001001.

[8] Lux O, Sarang S, Kitzler O, et al. Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain[J]. Optica, 2016, 3(8): 876-881.

[9] Sun Y X, Li M Y, Kitzler O, et al. Stable high-efficiency continuous-wave diamond Raman laser at 1178 nm[J]. Laser Physics Letters, 2022, 19(12): 125001.

[10] Fan L, Zhao W Q, Qiao X, et al. An efficient continuous-wave YVO4/Nd∶YVO4/YVO4 self-Raman laser pumped by a wavelength-locked 878.9 nm laser diode[J]. Chinese Physics B, 2016, 25(11): 114207.

[11] Li X L, Lee A J, Pask H M, et al. Efficient, miniature, CW yellow source based on an intracavity frequency-doubled Nd∶YVO4 self-Raman laser[J]. Optics Letters, 2011, 36(8): 1428-1430.

[12] Lee C Y, Chang C C, Tuan P H, et al. Cryogenically monolithic self-Raman lasers: observation of single-longitudinal-mode operation[J]. Optics Letters, 2015, 40(9): 1996-1999.

[13] Lin J, Pask H M. Nd∶GdVO4 self-Raman laser using double-end polarised pumping at 880 nm for high power infrared and visible output[J]. Applied Physics B, 2012, 108(1): 17-24.

[14] Sheng Q, Li R, Lee A J, et al. A single-frequency intracavity Raman laser[J]. Optics Express, 2019, 27(6): 8540-8553.

[15] Bonner G M, Lin J P, Kemp A J, et al. Spectral broadening in continuous-wave intracavity Raman lasers[J]. Optics Express, 2014, 22(7): 7492-7502.

[16] Sheng Q, Lee A J, Spence D J, et al. Wavelength tuning and power enhancement of an intracavity Nd∶GdVO4-BaWO4 Raman laser using an etalon[J]. Optics Express, 2018, 26(24): 32145-32155.

[17] Savitski V G, Friel I, Hastie J E, et al. Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers[J]. IEEE Journal of Quantum Electronics, 2012, 48(3): 328-337.

[18] Chen Y F, Chen C M, Lee C C, et al. Efficient solid-state Raman yellow laser at 579.5 nm[J]. Optics Letters, 2020, 45(19): 5612-5615.

[19] Chen Y F, Huang H Y, Lee C C, et al. High-power diode-pumped Nd∶GdVO4/KGW Raman laser at 578 nm[J]. Optics Letters, 2020, 45(19): 5562-5565.

[20] Chen Y F, Li D, Lee Y M, et al. Highly efficient solid-state Raman yellow-orange lasers created by enhancing the cavity reflectivity[J]. Optics Letters, 2021, 46(4): 797-800.

[21] McKay A M, Kitzler O, Mildren R P. High power tungstate-crystal Raman laser operating in the strong thermal lensing regime[J]. Optics Express, 2014, 22(1): 707-715.

盛泉, 耿婧旎, 李锦辉, 付士杰, 史伟, 姚建铨. 高效率连续波Nd∶YVO4/KGW内腔拉曼激光器[J]. 中国激光, 2024, 51(5): 0501003. Quan Sheng, Jingni Geng, Jinhui Li, Shijie Fu, Wei Shi, Jianquan Yao. Efficient Continuous-Wave Nd∶YVO4/KGW Intra-cavity Raman laser[J]. Chinese Journal of Lasers, 2024, 51(5): 0501003.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!