激光与光电子学进展, 2024, 61 (2): 0211032, 网络出版: 2024-02-06  

小型化光学超声传感器及其在光声成像中的应用进展(特邀)创刊六十周年特邀

Miniaturized Optical Ultrasound Sensors and their Applications in Photoacoustic Imaging (Invited)
作者单位
1 中山大学电子与信息工程学院,广东 广州 510006
2 华东师范大学精密光谱科学与技术国家重点实验室,上海 200241
摘要
目前光声成像中用于探测超声波的主流器件是基于压电材料的超声换能器,考虑到这类换能器的探测性能随器件尺寸的减小而大幅下降,科研者们近年来开始逐渐关注于小型化光学超声传感器的研究与开发。相较于传统的压电超声换能器,这些小型化的光学超声传感器通常具备较宽的探测带宽和与尺寸几乎无关的高灵敏度,在推动更深和更高分辨率的光声成像方面展现出了巨大的潜力。本文首先对光学超声传感器的发展历程进行了简要回顾,然后比较了3种重要的小型化光学超声传感器以及并行寻址的方法,其次介绍了这些传感器在光声活体成像方面的应用进展,最后展望了光学超声传感器的未来前景。
Abstract
Most of the existing photoacoustic imaging systems detect ultrasound signals using piezoelectric transducers. As the performance of these transducers largely degrades with decreasing size, optical ultrasound sensors have recently attracted growing interest. Unlike piezoelectric transducers, miniaturized optical ultrasound sensors typically provide a wide bandwidth and high sensitivity almost independent of size. Therefore, they can potentially realize deeper and higher-resolution photoacoustic imaging than the existing systems. This article reviews recent developments in miniaturized optical ultrasound sensors and briefly compares three types of miniaturized optical ultrasound sensors and methods of parallel interrogation. We also introduce some recent biomedical demonstrations of photoacoustic imaging using optical ultrasound sensors. Finally, the article discusses future research and development trends in optical ultrasound sensors.

1 引言

在光声成像(PAI)研究中,对成像深度和分辨率需求的不断增长促使了研究者们不断开发出具有高灵敏度、大带宽和宽接收角的超声传感器。在当前的光声显微成像(PAM)和光声计算断层扫描成像(PACT)中,广泛使用的是已经商业化的基于压电材料的超声换能器。从历史的发展来看,压电超声换能器最初被开发用于超声成像时,需要工作在脉冲回波模式中频繁地产生和接收超声波信号。然而PAI与医用超声成像的成像场景不同,超声波通常由脉冲激光或脉冲微波激发产生1,因此科研者们开始认识到压电超声换能器或许并非PAI的最佳选择。同时,压电超声换能器的不透明性可能会影响PAI中的光学激发,增加光学校准的复杂性并在光声耦合时引起信号损失。此外,超声传感器的微型化也对光声内窥镜(PAE)和PACT等应用较为重要,然而由于压电超声换能器的灵敏度与感应面积的平方根成比例下降2,直接减小压电超声换能器的尺寸会极大地降低传感器的性能。目前,研究者们或通过研究透明材料3,或通过开发电容微机械超声换能器4-5来尝试解决压电超声换能器面临的这些问题。然而迄今为止,改进后的器件所呈现出的灵敏度和带宽等性能表现仍然无法满足临床应用对PAI的指标要求。

相较于电学探测,光学探测具有高精度和高灵敏度的优势。近数10年来,研究者们积极地开发着光学超声传感器,以期最终替代PAI中的压电超声换能器。与压电超声换能器相比,光学超声传感器具有较大的工作带宽和与尺寸几乎无关的高灵敏度。凭借这些优势,光学超声传感器在推动PAI的应用开展方面具有巨大潜力。迄今为止,多种用于光学超声探测的方法已被提出,与其技术原理相关的综述文章可参见文献[16]。本文重点介绍使用微型光学谐振腔的超声传感器,该类型的光学超声传感器具有高灵敏度、微型化等特点,展现出其作为新一代敏感和宽带超声传感器的巨大潜力。接着,对光学超声传感器阵列进行并行寻址的最新方法进行了简要介绍。最后,对这些光学超声传感器在开展PAI的最新应用进行了回顾,并讨论了光学超声传感器的未来发展趋势。

2 基于光学微谐振腔的光学超声传感器

由于光学测量通常具有高灵敏、高准确度的特点,各类光学超声传感器的基本思想均是通过测量光学参数的时域变化来反映超声波的时域信号强度1。简要来说,超声波是一种物质波,其存在会引起所处环境光学性质的变化,当具有时变效应的超声波信号存在时,所监测的光学信号也会展现相应的时变特性。相比于压电超声换能器依赖于超声波能量到电能的直接转换,光学超声传感器依赖的是从超声波到光波再到电能的转换。因此,光学超声传感器的探测极限通常由光电探测器的探测极限决定。在光学超声传感器的发展历程中,存在着多种实现形式。例如,通过记录超声波穿过两种不同介质界面时引起的界面反射光强度的波动,能够实现随时间变化的超声波信号强度的探测7。为了提高传感器的探测灵敏度,科研者们在界面处镀上金属-介电涂层以激发表面等离子体共振,进而增强光与超声波的相互作用8-9。该类型的光学超声传感器的带宽高达180 MPa10-11,有利于提高PAM的轴向分辨率。除此之外,还可以利用超声波存在时的光束偏转程度来反映超声波信号的强度12-13。这种偏转通常出现在声光偏转器中,可以使用对位置敏感的光学探测器定量测量。该探测器能够有效地表征超声波14-15,除了能够检测超声波引起的位置变化之外,还可以检测超声波引起的相位及偏振变化16

为了提高传感器的探测灵敏度,也可以通过光学干涉系统来测量光路中超声波引起的相位变化。在早期的研究中,迈克尔孙干涉仪和马赫-曾德干涉仪(MZI)已经证明了它们具备探测超声波的能力17-18。研究者们也尝试将光学谐振腔与光纤系统耦合来探测超声波信号,搭建了大带宽、高灵敏度的PAI系统19-21。光学谐振腔通过将光束限制在较小的空间内以增强光与超声波的相互作用,能够有效提高探测的灵敏度。近年来,微纳加工工艺的发展使得具有高品质因数的微米甚至纳米尺度的光学谐振腔成为可能。因此,结合了微型光学谐振腔和光学干涉测量方法的光学超声传感器通常具有高灵敏度、微型化等优点。接下来,重点描述3种基于不同微型光学谐振腔的光学超声传感器:法布里-珀罗谐振腔22-27、π相移布拉格光栅谐振腔(π-BGs)28-34和微环谐振器35-37

2.1 法布里-珀罗谐振腔

早期的法布里-珀罗干涉仪将探测光束置于两个平面镜之间,由于超声波的存在会改变谐振腔的光程,造成谐振腔的共振频率随之改变,因此通过记录透射或反射光束的瞬态强度变化就能够实现超声波信号的探测,目前基于该类光学干涉仪的超声传感器可以实现低至50 Pa的探测灵敏度和高达40 MHz的探测带宽24。尽管该传感器的设计与制造对其实现阵列化具有一定便利性2338,但探测光束的往返振荡会引起横向偏移,导致高度集成的光学约束难以实现,进而降低了光学和超声波的探测灵敏度27

近几年,Guggenheim等27设计了一种微型的平凹光学谐振腔,通过使用波前匹配的凹面镜来增强光束在腔体内来回反射时的光学约束来大幅提高超声波探测灵敏度。该光学超声传感器的示意图如图1(a)所示,其中,实心平凹聚合物的微型光学谐振腔位于两个高反射镜之间,腔体被封装在同种聚合物层内,以实现声学性质均匀的平面结构。此外,为了最大化传感器的灵敏度,对寻址光束的发散度和顶部镜子的曲率进行了完美匹配,寻址光束的频率被调谐为接近谐振腔的共振频率。为了演示成像应用,该光学谐振腔被连接到单模光纤的尖端,如图1(b)所示。图1(c)展示了一个腔长为16 μm的传感器的频率响应,在20 MHz的测量带宽内,3.5 MHz超声波频率时的噪声等效压力(NEP)低至9.3 Pa(2.1 mPaHz-1/2)。其相应的方位角响应测量值被展示在了图1(d)中,作为对比绿色虚线展示了直径为2 mm的圆盘形传感器的理论响应。在40 MHz的频率范围内,该光学超声传感器具有高灵敏度,有效全向性高达±90°。图1(e)进一步展示了不同超声波频率下,该传感器的角度响应与直径为2 mm的圆盘形传感器的理论响应对比图,进一步验证了基于平凹光学谐振腔的传感器的优越性能。值得注意的是,对于不同长度的腔体,该传感器在灵敏度和探测带宽之间存在着一定折中,其中,较小长度的微腔具有更宽的带宽,但其灵敏度较低。

图 1. 基于平凹光学谐振腔的超声传感器27。(a)基于平凹光学谐振腔的超声传感器示意图;(b)在单模光纤顶端形成的超声传感器示意图;(c)16 μm腔长的传感器的频率响应曲线;(d)16 μm腔长的传感器的方向角响应分布图;(e)16 μm腔长的传感器的方向角响应与直径为2 mm的圆盘形传感器的理论响应对比图

Fig. 1. Plano-concave optical microresonator optical ultrasound sensor[27]. (a) Schematic of the plano-concave optical microresonator ultrasound sensor; (b) schematic of the sensor formed on the tip of a single mode optical fiber; (c) frequency response plot of the sensor with a cavity thickness of 16 μm; (d) direction angle response diagram of the sensor with a cavity thickness of 16 μm; (e) direction angle response of the sensor with a cavity thickness of 16 μm compared to the theoretical response of a disk-shaped sensor with a 2-mm diameter

下载图片 查看所有图片

2.2 π-BGs谐振腔

基于π-BGs的光学超声传感器本质上是在光纤或波导上加工而成的一维谐振腔体。在这些微型谐振腔中,光被限制在比布拉格光栅物理尺寸更小的维度内。早期该类传感器的灵敏度和带宽分别可达到100 Pa和77 MHz30-31。然而,该类传感器是一种线性探测器,相对于点探测器需要更复杂的图像重建算法。

最近,Shnaiderman等33基于绝缘硅片工艺开发了近乎理想点状的传感器,该传感器具有光波导上的微型π-BGs,被称为硅波导标准检测器(SWED),感应面积仅为220 nm×500 nm,每面积灵敏度比压电超声换能器高出100000000倍,其示意图及其工作原理如图2(a)所示。

图 2. 基于π-BGs的点状SWED33。(a)SWED读出系统示意图;(b)宽带超声点源线性扫描布拉格光栅侧面波纹深度为40 nm的SWED所获得的SWED3的空间响应图,扫描路径平行于芯片表面的短维度;(c)宽带超声点源线性扫描水听器所获得的直径为0.5 mm的针状水听器的空间响应图;(d)在宽带超声点源作用下,4个不同SWED的时间响应图;(e)与图2(d)信号对应的4个SWED的频谱响应图

Fig. 2. Point-like SWED based on π-BGs[33]. (a) Diagram of the SWED read-out system; (b) spatial response of SWED3 acquired by scanning the SWED with a 40-nm corrugation depth on the sides of the Bragg grating linearly over a broadband ultrasound point source, the scanning trajectory is aligned with the short dimension of the chip facet; (c) spatial response of a needle hydrophone with a diameter of 0.5 mm acquired by scanning the hydrophone over a broadband ultrasound point source; (d) temporal responses of four different SWEDs when subjected to a broadband ultrasound point source; (e) spectral responses of four SWEDs to the signals in Fig. 2 (d)

下载图片 查看所有图片

SWED包含一个硅波导,可分为4个部分:银层、间隔层、腔体和布拉格光栅。当连续泵浦激光被限制在腔体内时,其波长被调谐到非共振最陡斜坡处,当入射的超声波引起腔体的共振变化时,光电二极管所测量的反射光强的变化可表示为时变的超声波信号。该工作中展示了4个间隔长度分别为26 μm、14 μm、9 μm和3.5 μm的SWED的工作性能,其中,图2(b)展示了通过线性扫描宽带超声点源表征的SWED3的空间响应。作为对比,图2(c)展示了使用较大尺寸的针式水听器扫描超声点源时的空间响应。为了进一步表征探测带宽跟间隔长度的关系,科研者们测量了4个SWED的时间响应,结果如图2(d)所示,将该时间响应进行傅里叶变换,就获得了如图2(e)所示的频率响应。通过比较可以发现,传感器的中心频率随间隔长度的减小而增加。此外,SWED3的探测带宽在这4个传感器中最高,高达230 MHz,而SWED1在37 MHz的中心频率25 MHz的带宽内,NEP可低至45 Pa(9 mPaHz-1/233

Hazan等34在相同的硅光子学平台上开发了一种基于微型化π-BGs的光学超声传感器,如图3(a)~(c)所示,其带宽超过了200 MHz。当超声波作用于硅π-BG上时,其谐振腔内光束和马赫-曾德干涉仪的参考光束之间的相位差会对输出光强进行调制,如图3(d)~(g)所示。在激光的相位噪声抵消作用下,通过读取稳定的MZI的差分输出电压信号[图3(h)]可获取超声时域信号,该传感器的NEP降至2.2 mPaHz-1/2。通过二维扫描由光纤产生的10 µm大小的点源,重建得到如图3(i)所示的图像,其横向宽度分别为16 µm和13 µm,轴向宽度为13 µm。此外如图3(j)所示,该研究团队还模拟了该传感器在分辨两个间隔距离10 µm的点源的能力,其分辨率达到了25 µm。

图 3. 基于硅光体系的超声探测器34。(a)硅光子层结构及带光栅耦合器的π-BG示意图;(b)光纤粘合前硅光子芯片照片;(c)组装后镀金的硅光子芯片照片;(d)光学读出系统示意图;(e)谐振腔光谱图;(f)超声引起的波长变化图;(g)谐振腔的光学输出信号图;(h)在系统输出处采样的差分电压信号图;(i)点源及其二维切片重建图;(j)分辨两个不同间隔距离点源的模拟图

Fig. 3. Silicon-photonics acoustic detector[34]. (a) Schematic of the layer structure of silicon-photonics and the configuration of π-BG with grating couplers; (b) photograph of the silicon-photonics chip before fiber bonding; (c) photograph of the assembled silicon-photonics chip with a gold coating; (d) schematic of the optical readout system; (e) spectrum plot of the resonant cavity; (f) plot of ultrasound-induced wavelength variation; (g) plot of the optical output signal from the resonator; (h) plot of differential voltage signal, sampled at the output of the system; (i) reconstruction image of the point source and corresponding 2D slices; (j) separation simulation of two point sources at different distances

下载图片 查看所有图片

2.3 微环谐振腔

微环谐振腔具有高品质因子、微型化和光透明等优势35-3639-41,迄今为止,文献中已经报道了使用聚合物3639、硅42,甚至硫化物43等材料制备的基于微环的光学超声传感器。在各个性能指标方面,Ling等44和Xie等45开发的传感器具有高达105的品质因子,Zhang等46开发的传感器响应频率带宽高达350 MHz,Westerveld等42开发的高灵敏度的传感器NEP低至1.3 mPaHz-1/2,Li等35开发的传感器接收角度较大,可达±30°。由于微环谐振腔所具有的众多优点,该类传感器在PAI领域备受研究者们的青睐。

Westerveld等42结合硅光技术开发了一种基于微环谐振腔的光学超声传感器,该传感器大小约为20 µm,在3~30 MHz的频率范围内NEP可保持在1.3 mPaHz-1/2以下。基于微环谐振腔的光学超声传感器的工作原理如图4(a)所示,入射的超声波引起声学谐振膜的振动。分裂脊波导的一部分位于可动膜上,一部分位于固定基底上,它们之间被一个长度为15 nm的间隙分隔,如图4(b)所示。该波导被制成环形,有效形成了微环谐振腔,并由探测激光进行寻址。由于间隙中强烈的光场聚集效应,微小的超声波强度变化会造成波导有效折射率的强烈变化,进而改变微环谐振腔的共振频率。在这里需要注意的是,由于硅相对较硬,因此需要声学谐振膜来提升传感器的灵敏度。通过记录不同时刻激光的平均传输功率和传感器输出,光传输的直流成分和信号时间轨迹峰值分别如图4(c)左轴和右轴所示。通过激发宽带超声脉冲来对具有20 µm膜直径的传感器进行表征,得到的时间响应如图4(d)所示,其中,时间窗口(红色虚线)通过选择压力脉冲的有效范围来排除来自基板后表面的反射。经过与校准的水听器进行一系列比较计算,传感器的灵敏度如图4(e)的左轴所示。在不施加超声波的情况下,可从记录的时间轨迹计算得到传感器的噪声谱密度,如图4(e)的右轴所示。将这两条曲线相除,可以计算出NEP谱密度,在3~30 MHz的频率范围内均低于1.3 mPaHz-1/2。此外,该课题组还开发了一个包含10个微环的传感器阵列,各阵元彼此间隔30 µm,如图4(f)所示,其中,各微环谐振腔的半径略有不同,在插图展示了3个微环作为例子,以实现共振波长间的区别。研究人员们希望通过调整这些微环传感器的共振频率使其工作波长略不相同,再结合片上光子多路波分复用技术来实现对传感器阵列的并行寻址和复用。

图 4. 结合了硅光技术的微环谐振器光学超声传感器42。(a)传感器示意图;(b)带有微小间隙的分裂脊波导示意图;(c)不同激光波长下的输出光谱;(d)传感器时间响应曲线;(e)传感器的灵敏度(左轴)和噪声幅度谱密度(右轴)曲线;(f)由10个传感器构成的一维阵列的传输光谱

Fig. 4. Optical ultrasound sensor utilizing the micro-ring resonator in silicon photonics[42]. (a) Schematic of the sensor; (b) schematic of the split-rib waveguide featuring a small gap; (c) output spectrum at different laser wavelengths; (d) temporal response plot of the sensor; (e) plot of the sensor sensitivity (left axis) and noise amplitude spectral density (right axis) of the sensor; (f) transmission spectrum of a one-dimensional array composed of ten sensors

下载图片 查看所有图片

2.4 传感器阵列并行寻址

大多数基于微型谐振腔的光学超声传感器都是单元素的,而在实际应用中多元素的传感器阵列可以极大地提高成像速度、提升成像视场和接收角度。尽管法布里-珀罗干涉仪本身是一个二维传感器阵列2338,但该类传感器阵列的并行寻址通常涉及光电探测器阵列的使用,大幅增加了电路复杂性且容易造成信号串扰。类似地,基于光纤光学的探测器阵列也需要相当复杂的寻址系统47-50。2008年,Maxwell等36开发了首个片上集成的传感器阵列,其包含4个微环。然而由于当时制造的光学谐振腔的品质因子相对较低,相邻共振频率之间存在较大程度的频谱重叠。因此,如何实现4个微环的并行工作仍然是一个挑战。2021年,Westerveld等42基于硅光技术开发了具有高品质因数的微环阵列,包含10个微环且相邻元素共振频率之间有明显的间隔。然而,该系统只有一个激光和一个光电探测器,一次只允许单个微环传感器进行工作。为了实现并行寻址,Zhang等46设想了一种基于波分复用的寻址方式,该方法相当繁琐,需要足够数量的光源-探测器对42或者频率扫描源48。Hazan等50则使用相位调制脉冲来实现对超声波的多通道并行检测,然而系统最多仅可容纳4个微环,且每个检测通道仍然需要一个光电探测器,极大地增加了系统的复杂性。

Pan等43在对光学超声传感器阵列进行并行寻址方面取得了新的进展,开发了数字光学频率梳(DOFC)技术,可以稳定、灵活和可调谐地探测传感器阵列的传输光谱。在实验中该研究团队制备了一个包含15个微环的光学超声传感器阵列,并将该传感器阵列耦合到单总线波导上。这些微环传感器的频率响应带宽高达175 MHz(-6 dB)、NEP低至2.2 mPaHz-1/2或7.1 Pa(20 MHz范围内)、接收角度为±30°(25 MHz时为-3 dB)、尺寸为0.85 μm×40 μm×40 μm。使用传感器阵列实现并行寻址的实验装置如图5(a)所示,其中,光源为连续波窄线宽可调激光器。DOFC的生成始于一个40 GHz多载波带宽和1536个序列长度的数字信号,该数字信号是通过正交频分复用法合成的。为了解调DOFC,测得的信号需要通过傅里叶变换到频域,从而实现传感器阵列传输光谱的并行探测。图5(b)绘制了15个微环的传输光谱随时间变化的测量结果,其中,插图显示了DOFC对传感器阵列的传输光谱采样的方式。当没有超声波作用时,每个微环的共振频率保持平稳,而当脉冲光引起的超声波信号对这些微环的共振频率进行调制时,图5(c)绘制了传输光谱随时间变化的示意图。通过分析传输光谱的时变过程,就可以确定到达每个光学微环的超声波时域强度信息,如图5(d)所示。

图 5. 基于微环传感器阵列的并行寻址原理43。(a)成像系统的实验设置图;(b)空状态下,传感器阵列随时间变化的传输光谱图;(c)超声波调制传感器阵列时,随时间变化的传输光谱图;(d)每个微环传感器随时间变化的超声波信号强度

Fig. 5. Parallel addressing principle based on micro-ring sensor array[43].(a) Experimental setup of the imaging system; (b) the recorded time-varying transmission spectrum of the sensor array under null conditions; (c) the recorded time-varying transmission spectrum of the sensor array modulated by ultrasound; (d) the time-varying reconstructed ultrasound signal of each micro-ring sensor

下载图片 查看所有图片

3 光学超声传感器的成像应用

凭借其卓越的性能,光学超声传感器已被初步用于PAI应用中,如在PAM及PAE51-53 中对单细胞53、小鼠耳朵4554和小鼠大脑55等进行高分辨率成像,以及在成像深度高达8 mm的深层生物组织中56对活体斑马鱼全身的PACT成像43。诚然,相比于使用已经商用化的压电超声传感器而言,基于光学超声传感器的活体成像演示仍然较少。这主要是因为该研究仍处于早期工艺摸索和研发阶段,传感器及其成像系统的鲁棒性仍有待提高。我们相信,随着制备工艺不断成熟,未来将会涌现出更多的基于光学超声传感器的活体PAI实验。本小节着重介绍两个特别适合于微型光学超声传感器的代表性成像应用。

3.1 微型前视内窥成像

为了推动PAI的临床应用,目前有大量的工作关注于如何推进PAI的工作深度57-58。其中,一个重要的研究热点集中在微型PAE设备的开发上,可在微创情况下评估前列腺癌、结直肠癌和冠状动脉等疾病,亦可在腹腔镜手术中协助指导介入手术52。为满足PAE对微型化超声传感器的需求,研究者们开发了一种微型前视三维光学超声传感器,包括一个带有法布里-珀罗传感器的相干光纤束2459-60。具体来说,该传感器由一个刚性的76 mm长、3.2 mm直径的光纤束组成,具有50000个纤芯,可以通过点扫描的方式来实现寻址,如图6所示。

图 6. 全光学前视PAE传感器52。(a)传感器示意图;(b)远端放大图;(c)沉积在光纤束远端的法布里-珀罗传感器,由夹在聚对二氯甲苯间隔层之间的两个介电镜涂层组成

Fig. 6. All-optical forward-viewing photoacoustic endoscopy sensor[52]. (a) Schematic of the sensor; (b) magnified visualization of the distal end; (c) the Fabry-Pérot sensor deposited on the distal end of the fiber bundle consists of two dielectric mirror coatings that are sandwiched between a Parylene C spacer layer

下载图片 查看所有图片

Ansari等52利用该PAE传感器,结合590 nm的激发脉冲光源对离体鸭胚进行了成像,如图7(a)所示,其中,三维图像数据集的最大强度投影如图7(b)~(g)所示。在这些图像中,绒毛尿囊膜的精细毛细血管网络和直径约50 µm的血管都实现了可视化。

图 7. 体外鸭胚的光声图像52。(a)禽类胚胎脉管系统示意图;(b)(c)同一胚胎在0~200 µm深度范围的两个区域的x-y最大强度投影;(d)(f)在0~1.5 mm深度范围内,分别与图7(b)、(c)相同的x-y最大强度投影;(e)(g)y-z最大强度投影

Fig. 7. Photoacoustic images of an ex vivo duck embryo[52]. (a) Schematic of an avian embryonic vasculature; (b)(c) maximum intensity projections of x-y cross-sectional images, covering a depth range from 0 to 200 µm, generated for two distinct regions of the same embryo; (d)(f) maximum intensity projections of x-y cross-sectional images, covering a depth range from 0 to 1.5 mm, generated for the same two regions as in Fig. 7 (b),(c) respectively; (e) (g) maximum intensity projections of y-z cross-sectional images

下载图片 查看所有图片

该PAE传感器还被用于对五周大的小鼠腹部皮肤微血管进行成像。三维图像数据集在两个不同区域的x-yx-z的最大强度投影如图8所示,在深约2 mm处呈现出丰富的血管信息,这些血管的直径范围从53 µm到180 µm不等。

图 8. 小鼠腹部皮肤微血管的光声图像52。(a)(b)0~2 mm深度范围的两个区域的x-y最大强度投影;(c)(d)同一区域的x-z最大强度投影

Fig. 8. Photoacoustic images of mouse abdominal skin microvasculature[52]. (a) (b) The maximum intensity projection of x-y in two areas within a depth range of 0‒2 mm; (c) (d) maximum intensity projection of x-z in the same region

下载图片 查看所有图片

与直径数毫米的光纤束比起来,使用直径较小的多模光纤(MMFs)来开发微型PAE传感器更具前景。Zhao等61通过使用直径为140 µm的MMF来传递激发光,结合高灵敏度的光学超声传感器来探测光声信号。通过数字微镜器件进行波前调控,科研者们实现了MMF末端焦点光斑的快速扫描,获取了小鼠红细胞的光声图像。其中,对于100 µm直径大小的图像,采集速度约为3 frame/s,图像分辨率达到系统光学衍射极限,约为1.2 µm。由于该传感器可提供亚细胞的空间分辨率图像,包含了组织丰富的功能、分子和微观结构等信息,可以被用来实时协助和指导微创手术。

3.2 植入式光学超声传感器的体内皮质成像

微型光学超声传感器在植入活体动物的大脑中时具有优势。2019年,Li等55开发了一种低成本的软纳米压印光刻方法,制造了基于微环谐振腔的一次性光学超声传感器。通过将传感器安置到慢性颅窗(CCW)的内表面,实现了超声传感CCW(usCCW),并对活体小鼠的皮质血管结构进行了超过28天的监测。

图9(a)中,研究者们首先通过颅骨切开手术将usCCW植入颅骨,微型光学传感器能够较好地嵌入硬脑膜和玻璃窗之间的狭窄空间,如图9(b)所示。在成像过程中,激发光通过usCCW入射到成像区域,如图9(c)所示。图9(d)为明场光学显微镜图像,显示出了成像区域,相同区域的深度编码PAM图像如图9(e)所示,三维成像结果如图9(f)所示。值得注意的是,PAM图像显示了更精细的细节,如小毛细血管。除了对血管进行成像外,该传感器也对暂时性出血进行了成像,如图9(g)~(i)所示。这些结果的呈现归功于PAM的声学分层能力,而光学超声传感器大响应带宽带来的高轴向分辨率进一步凸显了这一优势。

图 9. 使用usCCW进行体内PAM皮质成像55。(a)小鼠开颅后在颅骨上植入usCCW的示意图;(b)通过usCCW进行光学扫描的示意图;(c)沿图9(b)突出显示的横截面进行光学激发和超声检测的结构图;(d)微环谐振器获得的皮质区域的明场PAM图像;(e)同一区域的深度编码的PAM最大强度投影图;(f)血管方向和皮质曲率的3D PAM图像;(g)图9(d)和图9(e)中虚线框指定的出血区域的PAM图像;(h)沿图9(g)中绿色虚线的B扫描PAM图像;(i)出血区域下隐藏的血管的PAM图像,比例尺,(a)(b)0.5 mm,(g)(i)200 µm

Fig. 9. In vivo PAM cortical imaging using a usCCW[55]. (a) Schematic of the mouse skull with the usCCW implantation following craniotomy; (b) schematic of optical scanning conducted through the usCCW; (c) optical excitation and ultrasonic detection configuration along the delineated cross-sectional region shown in Fig. 9(b); (d) brightfield optical microscopy image obtained through the micro-ring resonator in the cortical region; (e) depth-encoded maximum intensity projection image captured via PAM of the identical area; (f) three-dimensional PAM image showcasing the vascular directions and cortical curvature; (g) PAM image showcasing the hemorrhage area delineated by the dashed box in Fig. 9(d), (e); (h) PAM B-scan image showcasing the area delineated by the green dashed line in Fig. 9(g); (i) PAM image showcasing the concealed blood vessels underneath the hemorrhage region, scale bars, (a) (b) 0.5 mm, (g) (i) 200 µm

下载图片 查看所有图片

研究者们还使用usCCW对活体小鼠大脑进行了长期活体PAM成像,如图10所示。传感器只连接了两根光纤,对小鼠的活动约束很小,如图10(a)所示。小鼠仅在成像实验期间[图10(b)~(c)]被固定在动物固定架上,其余时间均被养在笼子中。在这项研究中,研究者们对小鼠进行了多达28天的PAM成像,在此期间微环传感器的品质因数下降非常小[图10(d)],证实了usCCW在体内应用中的高稳定性。28天中的PAM图像的最大强度投影演化如图10(e)所示,展示了相同区域的皮质血管随时间的演变。手术后第3天出现了中度出血,第4天出血逐渐消失,在接下来的几天中还能清楚地观察到新血管的生成。图10(f)~(h)进一步比较了第0天和第2天、第0天和第14天,以及第14天和第28天的皮质脉管系统,采集PAM图像的相应位置由图10(e)中的黄色虚线框标记。通过将紫红色和绿色渲染的两幅图进行叠加,能够实现新血管生成过程的直接可视化,而白色被用来表示重叠区域。

图 10. 通过usCCW对皮质区域进行长期的PAM成像55。(a)植入透明usCCW后,在饲养笼中自由活动的小鼠照片;(b)成像期间被固定在显微镜下的小鼠照片;(c)植入了透明usCCW后的大脑皮层的放大图;(d)28天内测得的品质因数,基本没有下降;(e)28天内同一区域的大脑皮质血管的PAM图像的最大幅度投影;(f)(g)(h)第0天和第2天、第0天和第14天、第14天和第28天的皮质脉管系统的比较

Fig. 10. PAM cortical imaging through the usCCW over an extended period[55]. (a) Photograph of a mouse inside a rearing cage, at liberty to move following the implantation of transparent usCCW; (b) photograph obtained during imaging of the mouse fixed under the microscope; (c) magnified image of the cerebral cortex after the implantation of transparent usCCW; (d) hardly reduced quality factors measured during a span of 28 days; (e) maximum amplitude projections of PAM images of cortical vasculature captured in the identical region during a span of 28 days; (f) (g) (h) comparison of the measured cortical vasculature between day 0 and day 2, day 0 and day 14, and day 14 and day 28

下载图片 查看所有图片

4 结论

PAI在超声探测方面面临的挑战与机遇,极大地引起了研究者们对光学超声探测方案的兴趣。与压电超声传感器相比,基于微型谐振腔的光学超声传感器的主要优势在于保持微小尺寸的同时,而不牺牲灵敏度。然而,近期也有研究者们评论道62,光学超声传感器目前所展现出来的性能优势并不足以让其在各个PAI领域都替代已商业化的压电超声传感器。诚然,由于PAM成像深度较浅且多数时候仅需要单个传感器,光学超声传感器的大带宽优势能够通过提供更优的轴向分辨率而得到体现。然而,PACT通常需要使用传感器阵列来实现高速成像,光学超声传感器在并行寻址方面的缺失和问题此时便展现出来。同时,PACT由于成像深度较深的原因仅需对低频超声波进行探测,光学超声传感器的大带宽优势此时显得毫无用武之地。此外,由于超声波的探测通常处于远场,传感器阵列中的元素只需跟超声波远场时的半波长相匹配,并没有对于微米甚至纳米尺度片上传感器的需求。

不管怎样,研究者们在光学超声传感器方面取得的创新成果不断突破着超声波的探测极限,尽管仍然存在着许多问题和不确定因素,这些研究成果最终定将在推动PAI在实现更深和更高分辨率成像方面取得巨大的成果。

参考文献

[1] Wissmeyer G, Pleitez M A, Rosenthal A, et al. Looking at sound: optoacoustics with all-optical ultrasound detection[J]. Light: Science & Applications, 2018, 7: 53.

[2] Winkler A M, Maslov K, Wang L V. Noise-equivalent sensitivity of photoacoustics[J]. Journal of Biomedical Optics, 2013, 18(9): 097003.

[3] Brodie G W J, Qiu Y Q, Cochran S, et al. Letters: optically transparent piezoelectric transducer for ultrasonic particle manipulation[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61(3): 389-391.

[4] Wygant I O, Zhuang X F, Yeh D T, et al. Integration of 2D CMUT arrays with front-end electronics for volumetric ultrasound imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55(2): 327-342.

[5] Khuri-Yakub B T, Oralkan O. Capacitive micromachined ultrasonic transducers for medical imaging and therapy[J]. Journal of Micromechanics and Microengineering: Structures, Devices, and Systems, 2011, 21(5): 54004-54014.

[6] Dong B Q, Sun C, Zhang H F. Optical detection of ultrasound in photoacoustic imaging[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(1): 4-15.

[7] Zhu X Y, Huang Z Y, Wang G H, et al. Ultrasonic detection based on polarization-dependent optical reflection[J]. Optics Letters, 2017, 42(3): 439-441.

[8] Nuster R, Paltauf G, Burgholzer P. Comparison of surface plasmon resonance devices for acoustic wave detection in liquid[J]. Optics Express, 2007, 15(10): 6087-6095.

[9] Wang T X, Cao R, Ning B, et al. All-optical photoacoustic microscopy based on plasmonic detection of broadband ultrasound[J]. Applied Physics Letters, 2015, 107(15): 153702.

[10] Paltauf G, Schmidt-Kloiber H, Köstli K P, et al. Optical method for two-dimensional ultrasonic detection[J]. Applied Physics Letters, 1999, 75(8): 1048-1050.

[11] Parsons J E, Cain C A, Fowlkes J B. Cost-effective assembly of a basic fiber-optic hydrophone for measurement of high-amplitude therapeutic ultrasound fields[J]. The Journal of the Acoustical Society of America, 2006, 119(3): 1432-1440.

[12] Maswadi S M, Ibey B L, Roth C C, et al. All-optical optoacoustic microscopy based on probe beam deflection technique[J]. Photoacoustics, 2016, 4(3): 91-101.

[13] Barnes R A, Maswadi S, Glickman R, et al. Probe beam deflection technique as acoustic emission directionality sensor with photoacoustic emission source[J]. Applied Optics, 2014, 53(3): 511-519.

[14] Zanelli C I, Howard S M. Schlieren metrology for high frequency medical ultrasound[J]. Ultrasonics, 2006, 44: e105-e107.

[15] Nuster R, Slezak P, Paltauf G. High resolution three-dimensional photoacoutic tomography with CCD-camera based ultrasound detection[J]. Biomedical Optics Express, 2014, 5(8): 2635-2647.

[16] Zhang P F, Miao Y H, Ma Y W, et al. All-optical ultrasonic detector based on differential interference[J]. Optics Letters, 2022, 47(18): 4790-4793.

[17] Deferrari H A, Darby R A, Andrews F A. Vibrational displacement and mode-shape measurement by a laser interferometer[J]. The Journal of the Acoustical Society of America, 1967, 42(5): 982-990.

[18] Bauer-Marschallinger J, Höllinger A, Jakoby B, et al. Fiber-optic annular detector array for large depth of field photoacoustic macroscopy[J]. Photoacoustics, 2017, 5: 1-9.

[19] Ma J, Zhao J, Chen H W, et al. Transparent microfiber Fabry-Perot ultrasound sensor with needle-shaped focus for multiscale photoacoustic imaging[J]. Photoacoustics, 2023, 30: 100482.

[20] Bai X, Ma J, Li X, et al. Focus-tunable fiber-laser ultrasound sensor for high-resolution linear-scanning photoacoustic computed tomography[J]. Applied Physics Letters, 2020, 116(15): 153701.

[21] Ma J, He Y, Bai X E, et al. Flexible microbubble-based Fabry–Pérot cavity for sensitive ultrasound detection and wide-view photoacoustic imaging[J]. Photonics Research, 2020, 8(10): 1558-1565.

[22] Ashkenazi S, Hou Y, Buma T, et al. Optoacoustic imaging using thin polymer étalon[J]. Applied Physics Letters, 2005, 86(13): 134102.

[23] Huang S W, Hou Y, Ashkenazi S, et al. High-resolution ultrasonic imaging using an etalon detector array[J]. Applied Physics Letters, 2008, 93(11): 113501.

[24] Zhang E, Laufer J, Beard P. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues[J]. Applied Optics, 2008, 47(4): 561-577.

[25] Hajireza P, Krause K, Brett M, et al. Glancing angle deposited nanostructured film Fabry-Perot etalons for optical detection of ultrasound[J]. Optics Express, 2013, 21(5): 6391-6400.

[26] Preisser S, Rohringer W, Liu M Y, et al. All-optical highly sensitive akinetic sensor for ultrasound detection and photoacoustic imaging[J]. Biomedical Optics Express, 2016, 7(10): 4171-4186.

[27] Guggenheim J A, Li J, Allen T J, et al. Ultrasensitive plano-concave optical microresonators for ultrasound sensing[J]. Nature Photonics, 2017, 11(11): 714-719.

[28] Rosenthal A, Razansky D, Ntziachristos V. High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating[J]. Optics Letters, 2011, 36(10): 1833-1835.

[29] Wu Q, Okabe Y. High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system[J]. Optics Express, 2012, 20(27): 28353-28362.

[30] Rosenthal A, Kellnberger S, Bozhko D, et al. Sensitive interferometric detection of ultrasound for minimally invasive clinical imaging applications[J]. Laser & Photonics Reviews, 2014, 8(3): 450-457.

[31] Wissmeyer G, Soliman D, Shnaiderman R, et al. All-optical optoacoustic microscope based on wideband pulse interferometry[J]. Optics Letters, 2016, 41(9): 1953-1956.

[32] Shnaiderman R, Wissmeyer G, Seeger M, et al. Fiber interferometer for hybrid optical and optoacoustic intravital microscopy[J]. Optica, 2017, 4(10): 1180-1187.

[33] Shnaiderman R, Wissmeyer G, Ülgen O, et al. A submicrometre silicon-on-insulator resonator for ultrasound detection[J]. Nature, 2020, 585(7825): 372-378.

[34] Hazan Y, Levi A, Nagli M, et al. Silicon-photonics acoustic detector for optoacoustic micro-tomography[J]. Nature Communications, 2022, 13: 1488.

[35] Li H, Dong B Q, Zhang Z, et al. A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy[J]. Scientific Reports, 2014, 4: 4496.

[36] Maxwell A, Huang S W, Ling T, et al. Polymer microring resonators for high-frequency ultrasound detection and imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(1): 191-197.

[37] Chao C Y, Ashkenazi S, Huang S W, et al. High-frequency ultrasound sensors using polymer microring resonators[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54(5): 957-965.

[38] Hamilton J D, Buma T, Spisar M, et al. High frequency optoacoustic arrays using etalon detection[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2000, 47(1): 160-169.

[39] Huang S W, Chen S L, Ling T, et al. Low-noise wideband ultrasound detection using polymer microring resonators[J]. Applied Physics Letters, 2008, 92(19): 193509.

[40] Ling T, Chen S L, Guo L J. High-sensitivity and wide-directivity ultrasound detection using high Q polymer microring resonators[J]. Applied Physics Letters, 2011, 98(20): 204103.

[41] Zhang C, Chen S L, Ling T, et al. Review of imprinted polymer microrings as ultrasound detectors: design, fabrication, and characterization[J]. IEEE Sensors Journal, 2015, 15(6): 3241-3248.

[42] Westerveld W J, Mahmud-Ul-Hasan M, Shnaiderman R, et al. Sensitive, small, broadband and scalable optomechanical ultrasound sensor in silicon photonics[J]. Nature Photonics, 2021, 15(5): 341-345.

[43] Pan J S, Li Q, Feng Y M, et al. Parallel interrogation of the chalcogenide-based micro-ring sensor array for photoacoustic tomography[J]. Nature Communications, 2023, 14: 3250.

[44] Ling T, Chen S L, Guo L J. Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector[J]. Optics Express, 2011, 19(2): 861-869.

[45] Xie Z X, Chen S L, Ling T, et al. Pure optical photoacoustic microscopy[J]. Optics Express, 2011, 19(10): 9027-9034.

[46] Zhang C, Ling T, Chen S L, et al. Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging[J]. ACS Photonics, 2014, 1(11): 1093-1098.

[47] Cranch G A, Nash P J, Kirkendall C K. Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications[J]. IEEE Sensors Journal, 2003, 3(1): 19-30.

[48] Gabai H, Steinberg I, Eyal A. Multiplexing of fiber-optic ultrasound sensors via swept frequency interferometry[J]. Optics Express, 2015, 23(15): 18915-18924.

[49] Bauer-Marschallinger J, Felbermayer K, Berer T. All-optical photoacoustic projection imaging[J]. Biomedical Optics Express, 2017, 8(9): 3938-3951.

[50] Hazan Y, Rosenthal A. Simultaneous multi-channel ultrasound detection via phase modulated pulse interferometry[J]. Optics Express, 2019, 27(20): 28844-28854.

[51] Dong B Q, Chen S Y, Zhang Z, et al. Photoacoustic probe using a microring resonator ultrasonic sensor for endoscopic applications[J]. Optics Letters, 2014, 39(15): 4372-4375.

[52] Ansari R, Zhang E Z, Desjardins A E, et al. All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy[J]. Light: Science & Applications, 2018, 7: 75.

[53] Dong B Q, Li H, Zhang Z, et al. Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection[J]. Optica, 2015, 2(2): 169-176.

[54] Liang Y Z, Fu W B, Li Q, et al. Optical-resolution functional gastrointestinal photoacoustic endoscopy based on optical heterodyne detection of ultrasound[J]. Nature Communications, 2022, 13: 7604.

[55] Li H, Dong B Q, Zhang X, et al. Disposable ultrasound-sensing chronic cranial window by soft nanoimprinting lithography[J]. Nature Communications, 2019, 10: 4277.

[56] Rong Q Z, Lee Y, Tang Y Q, et al. High-frequency 3D photoacoustic computed tomography using an optical microring resonator[J]. BME Frontiers, 2022, 2022: 9891510.

[57] Valluru K S, Wilson K E, Willmann J K. Photoacoustic imaging in oncology: translational preclinical and early clinical experience[J]. Radiology, 2016, 280(2): 332-349.

[58] Zackrisson S, van de Ven S M W Y, Gambhir S S. Light in and sound out: emerging translational strategies for photoacoustic imaging[J]. Cancer Research, 2014, 74(4): 979-1004.

[59] Zabihian B, Weingast J, Liu M Y, et al. In vivo dual-modality photoacoustic and optical coherence tomography imaging of human dermatological pathologies[J]. Biomedical Optics Express, 2015, 6(9): 3163-3178.

[60] Jathoul A P, Laufer J, Ogunlade O, et al. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter[J]. Nature Photonics, 2015, 9(4): 239-246.

[61] Zhao T R, Pham T T, Baker C, et al. Ultrathin, high-speed, all-optical photoacoustic endomicroscopy probe for guiding minimally invasive surgery[J]. Biomedical Optics Express, 2022, 13(8): 4414-4428.

[62] Garrett D C, Wang L V. Acoustic sensing with light[J]. Nature Photonics, 2021, 15(5): 324-326.

邱显坤, 赵佳玉, 沈乐成. 小型化光学超声传感器及其在光声成像中的应用进展(特邀)[J]. 激光与光电子学进展, 2024, 61(2): 0211032. Xiankun Qiu, Jiayu Zhao, Yuecheng Shen. Miniaturized Optical Ultrasound Sensors and their Applications in Photoacoustic Imaging (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(2): 0211032.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!