光通信研究, 2022 (3): 7, 网络出版: 2022-07-24  

一种基于混合光加密的物理层安全方法

A Physical Layer Security Method based on Hybrid Optical Encryption
作者单位
1 重庆邮电大学 通信与信息工程学院, 重庆 400065
2 东北大学 计算机科学与工程学院, 沈阳 110819
摘要
针对目前光网络物理层面临的窃听安全问题, 文章提出了一种基于高非线性光纤(HNLF)和超结构光纤布拉格光栅(SSFBG)新的混合光加密方案。方案中采用简并四波混频(FWM)效应对用户信息进行加解密, 并采用光编码技术对密钥信息进行编解码, 编码的同时实现了密钥信号的隐匿传输。通过对比信道中传输的加密信号波形和原始发送信号波形衡量系统的安全性, 并通过系统接收端误码率来衡量系统的有效性。仿真结果表明, 使用了文章所提新的混合光加密方案后, 用户数据信息的频率和相位发生扰乱, 编码后的密钥信号光功率低至-34.4 dBm, 因此窃听信道既无法得到有效数据信息, 也检测不到密钥信号, 从而实现了正交相移键控(QPSK)信号的安全传输。
Abstract
Aiming at the current eavesdropping security issues in the physical layer of optical networks, a new hybrid optical encryption scheme based on Highly Nonlinear Fiber (HNLF) and Super Structured Fiber Bragg Grating (SSFBG) is proposed in this paper. In the scheme, degenerate Four Wave Mixing (FWM) is used to encrypt and decrypt user information, and optical coding technology is used to encode and decode the key information. Therefore, the encoding and secret transmission of the key signal can be realized simultaneously. The security of the system is measured by comparing the waveform of the encrypted signal transmitted in the channel with the waveform of the original transmitted signal, and the effectiveness of the system is measured by the bit error rate at the system receiver side. The simulation results show that the frequency and phase of the user data information are disturbed, and the optical power of the encoded key signal is as low as -34.4 dBm. Therefore, the eavesdropping channel cannot obtain effective data information nor detect the key signal, which demonstrates the safe transmission of Quadrature Phase Shift Keying (QPSK) signal.
参考文献

[1] Gong X,Zhang Q,Zhang X,et al.Security Issues and Possible Solutions of Future-Oriented Optical Access Networks for 5G and Beyond[J]. IEEE Communications Magazine, 2021, 59(6):112-118.

[2] Fok M P, Wang Z, Deng Y, et al. Optical Layer Security in Fiber-optic Networks[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3):725-736.

[3] Shaneman K,Gray S.Optical Network Security: Technical Analysis of Fiber Tapping Mechanisms and Methods for Detection & Prevention[C]//IEEE MILCOM 2004.Monterey,CA,USA:IEEE,2004,2:711-716.

[4] Zhang Q, Gong X, Guo L. All-optical Pattern Recognition of QPSK Signals for High Speed Optoelectronic Firewalls[C]//Asia Communications and Photonics Conference.Beijing, China: Optical Society of America, 2020:M4A. 199.

[5] 杨玮. 基于 SOA-FWM 的 DQPSK 光信号加/解密方案[J]. 北京信息科技大学学报(自然科学版), 2018, 33(2):60-65.

[6] Zhang M, Cui Y, Zhan Y, et al. Optical Encryption/Decryption of 8PSK Signal Using FWM-based Modified XOR[J]. Applied Optics, 2015, 54(25):7813-7819.

[7] Li P, Wang Y, Lan Z, et al. Research on the Coding and Decoding Technology of the OCDMA System[C]//Sixth International Conference on Electronics and Information Engineering.Dalian, China: International Society for Optics and Photonics, 2015, 9794:97940U.

[8] Liu X, Wang L. Chaotic OCDMA System based on Superstructure Fiber Bragg Grating[J]. Journal of Optoelectronics Laser, 2014 (5):876-880.

[9] Li X, Pan W, Luo B, et al. Mismatch Robustness and Security of Chaotic Optical Communications based on Injection-locking Chaos Synchronization[J]. IEEE Journal of Quantum Electronics, 2006, 42(9):953-960.

[10] Rontani D, Locquet A, Sciamanna M, et al. Multiple-access Optical Chaos-based Communications using Optoelectronic Systems[C]//Conference on Lasers and Electro-Optics. San Jose, California,USA: Optical Society of America, 2010:CFC5.

[11] Erdogan T. Fiber Grating Spectra[J]. Journal of Lightwave Technology, 1997, 15(8):1277-1294.

巩小雪, 宣冉, 张琦涵, 李瑞. 一种基于混合光加密的物理层安全方法[J]. 光通信研究, 2022, 48(3): 7. GONG Xiao-xue, XUAN Ran, ZHANG Qi-han, LI Rui. A Physical Layer Security Method based on Hybrid Optical Encryption[J]. Study On Optical Communications, 2022, 48(3): 7.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!