太赫兹科学与电子信息学报, 2023, 21 (8): 1007, 网络出版: 2024-01-17  

基于尺寸渐变超表面宽带高增益低剖面天线

Broadband high-gain low-profile antenna based on gradient size metasurface
师伟春 1,2王宏建 1,2,*
作者单位
1 中国科学院国家空间科学中心微波遥感技术重点实验室,北京 100190
2 中国科学院大学,北京 100049
摘要
设计了一种基于尺寸渐变超表面的宽带高增益低剖面天线,该天线由双层超表面和一层微带缝隙组合而成。双层超表面由分别印刷在 2个介质板上的尺寸渐变六边形阵列贴片组成,贴片之间存在非等距间隙。超表面单元尺寸渐变设计能够使天线产生多个邻近的谐振点,从而展宽带宽。通过改变超表面天线尺寸结构,分析天线的宽带辐射特性。为获得最佳宽带性能,采用遗传算法优化天线几何参数。制作并测试了一款边长为 43.3 mm,厚度为 4.853 mm的样本天线用于验证仿真结果。实测结果显示,该天线-10 dB阻抗带宽达到了 54%(3.99~6.93 GHz),最高增益达到 12.05 dB,在 4~6 GHz范围内增益保持在 8 dB以上。该天线实现了宽频带、高增益、低剖面的特点,适用于宽带高速率无线通信的诸多领域。
Abstract
A broadband high-gain low-profile antenna based on gradient size metasurface is proposed. The antenna is composed of a double-layer metasurface and a layer of microstrip slot. The double-layer metasurface is composed of gradient size hexagonal array patches printed on two dielectric plates respectively. There are non-equidistant gaps between these patches. This gradient design of the metasurface unit size can generate multiple adjacent resonance points to broaden the bandwidth. The antenna's bandwidth radiation characteristics are analyzed by changing the size and structure of the metasurface antenna. In order to obtain the best broadband performance, genetic algorithms are employed to optimize the antenna geometric parameters. To verify the simulation results, a sample antenna with a side length of 43.3 mm and a thickness of 4.853 mm is fabricated and tested. The actual measurement results show that the -10 dB impedance bandwidth of the antenna reaches 54% (3.99~6.93 GHz), the highest gain reaches 12.05 dB, and the gain remains above 8 dB in 4~6 GHz range. Therefore, the antenna realizes the characteristics of wide frequency band, high gain and low profile, and can be applied to many fields of wireless communication.
参考文献

[1] 刘士杰,陈星.基于多层介质覆盖层的高增益 Fabry-Perot天线设计 [J].太赫兹科学与电子信息学报, 2018,16(3):486-489.

[2] WANG N Z, LIU Q, WU C Y, et al. Wideband Fabry-Perot resonator antenna with two complementary FSS layers[J]. IEEE Transactions on Antennas and Propagation, 2014,62(5):2463-2471.

[3] NIAZ M W, YIN Y Z, BHATTI R A, et al. Wideband Fabry-Perot resonator antenna employing multilayer partially reflective surface[J]. IEEE Transactions on Antennas and Propagation, 2021,69(4):2404-2409.

[4] YANG W C,CHEN S,CHE W Q,et al. Compact high-gain metasurface antenna arrays based on higher-mode SIW cavities[J]. IEEE Transactions on Antennas and Propagation, 2018,66(9):4918-4923.

[5] SYED NASSER S S, LIU W, CHEN Z N. Wide bandwidth and enhanced gain of a low-profile dipole antenna achieved by integrated suspended metasurface[J]. IEEE Transactions on Antennas and Propagation, 2018,66(3):1540-1544.

[6] LIU W E I,CHEN Z N,QING X M,et al. Miniaturized wideband metasurface antennas[J]. IEEE Transactions on Antennas and Propagation, 2017,65(12):7345-7349.

[7] LIU W, CHEN Z N, QING X M. Metamaterial-based low-profile broadband mushroom antenna[J]. IEEE Transactions on Antennas and Propagation, 2014,62(3):1165-1172.

[8] LIU W, CHEN Z N, QING X M. Metamaterial-based low-profile broadband aperture-coupled grid-slotted patch antenna[J]. IEEE Transactions on Antennas and Propagation, 2015,63(7):3325-3329.

[9] LIU W E I, CHEN Z N, QING X M. Miniature wideband non-uniform metasurface antenna using equivalent circuit model[J]. IEEE Transactions on Antennas and Propagation, 2020,68(7):5652-5657.

[10] YANG Z Z,LIANG F,YI Y,et al. Metasurface-based wideband,low-profile,and high-gain antenna[J]. IET Microwaves,Antennas & Propagation, 2019,13(4):436-441.

[11] BAI H,WANG G M,WU T. High-gain wideband metasurface antenna with low profile[J]. IEEE Access, 2019(7):177266-177273.

[12] 刘长青,张量,万志伟,等.基于超表面的低剖面高增益圆极化天线 [J].电波科学学报, 2021,36(1):96-100.

[13] CHEN Z N,LI T,LIU W E I. Microwave metasurface-based lens antennas for 5G and beyond[C]// 2020 14th European Conference on Antennas and Propagation(EuCAP). Copenhagen,Denmark:IEEE, 2020:1-4.

[14] LIN F H,CHEN Z N. Resonant metasurface antennas with resonant apertures:characteristic mode analysis and dual-polarized broadband low-profile design[J]. IEEE Transactions on Antennas and Propagation, 2021,69(6):3512-3516.

[15] CHEN S,YANG W C,CHE W Q,et al. Novel compact high-gain wideband filtering metasurface antenna[C]// 2018 Asia-Pacific Microwave Conference(APMC). Kyoto,Japan:IEEE, 2018:1393-1395.

师伟春, 王宏建. 基于尺寸渐变超表面宽带高增益低剖面天线[J]. 太赫兹科学与电子信息学报, 2023, 21(8): 1007. SHI Weichun, WANG Hongjian. Broadband high-gain low-profile antenna based on gradient size metasurface[J]. Journal of terahertz science and electronic information technology, 2023, 21(8): 1007.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!