激光与光电子学进展, 2023, 60 (7): 0723002, 网络出版: 2023-03-31  

基于机器学习与多光电二极管的可见光定位实验研究

Experimental Research on Visible Light Positioning Using Machine Learning and Multi-Photodiode
魏芬 1,2,3,4吴怡 1,3,4,*徐世武 1,5
作者单位
1 福建师范大学光电与信息工程学院医学光电科学与技术教育部重点实验室,福建 福州 350007
2 福建农林大学金山学院,福建 福州 350002
3 福建师范大学光电与信息工程学院福建省光子技术重点实验室,福建 福州 350007
4 福建师范大学光电与信息工程学院福建省光电传感应用工程技术研究中心,福建 福州 350007
5 福建师范大学协和学院,福建 福州 350117
摘要
针对单个光电二极管接收器的倾斜问题和几何算法的不足,搭建了多光电二极管接收器的真实可见光定位场景,并采用基于接收信号强度的指纹定位技术及其常用的机器学习算法,实验研究了4种典型的机器学习算法的定位性能。结果发现:在二维定位时,K最近邻、极限学习机、随机森林和自适应增强的定位误差小于2 cm的概率分别为96.67%、48.57%、67.14%和15.24%;在三维定位时,K最近邻、极限学习机、随机森林和自适应增强的定位误差小于2 cm的概率分别为74.52%、38.81%、59.76%和6.43%。结果均表明,K最近邻的定位性能较佳。在此基础上,比较了发光二极管个数、光电二极管个数和发光二极管发射功率等因素对定位精度的影响。结果表明:发光二极管个数和光电二极管个数的增加均有效地降低了定位误差,发光二极管的发射功率为5 W时,已经实现了定位误差的收敛。该结果为发光二极管分布密度较低时可见光定位系统的设计提供新的理论支持与实际应用参考价值。
Abstract
Aiming at the shortage of a single-photodiode (PD) receiver and geometric algorithms, we set up a real visible light positioning (VLP) scene of a multi-PD receiver and then use the fingerprint positioning technology based on the received signal strength, which commonly uses machine learning algorithms (MLAs). The positioning performance of four typical MLAs is studied. The results show that in two-dimensional positioning, the probabilities that the positioning error is less than 2 cm are 96.67%, 48.57%, 67.14%, and 15.24% for the K-nearest neighbor (KNN), extreme learning machine (ELM), random forest (RF), and adaptive boosting (AdaBoost), respectively, and in three-dimensional positioning, the probabilities that the positioning error is less than 2 cm for the KNN, ELM, RF, and AdaBoost are 74.52%, 38.81%, 59.76%, and 6.43%, respectively. Therefore, the positioning performance of the KNN is better in both the cases. On this basis, the influence of factors such as the number of light-emitting diodes (LEDs), number of PDs, and emission power of LEDs on the positioning accuracy is compared in detail. The results show that the increase in both the number of LEDs and PDs effectively reduces the positioning error. When the emission power of LEDs is 5 W, the positioning error convergence is achieved. The results provide a new theoretical support and practical application value for the design of VLP systems in the low LED distribution density scenes.

1 引言

据统计1,大多数人在室内环境中度过的时间超过80%,随着人们对室内定位服务的要求越来越高,在保证精度的前提下进行高速的室内定位引起了研究界的广泛关注,如商场、机场和地下停车场等大型室内环境中的导航。全球定位系统(Global positioning system,GPS)是常用的室外定位系统,然而GPS无法在室内可靠地工作2-3。文献[4]中报道了大量的室内定位方案,如无线保真(Wireless fidelity,Wi-Fi)5-6、射频识别(Radio frequency identification,RFID)7、蓝牙8,和ZigBee9等无线技术目前已广泛地应用于室内定位系统(Indoor positioning system,IPS)。然而,这些基于射频通信(Radio frequency communication,RFC)的定位技术会受到噪声和多径效应等因素的影响,使其定位精度只能达到米级别。超声波定位10可以非常精确,但其需要额外部署大量的基础设施。激光雷达11和基于相机的场景分析12技术提供了毫米级别的误差,但成本高昂,需要较高的计算能力。随着发光二极管(Light-emitting diode,LED)逐渐取代传统光源,出现了一种新的基于可见光通信(Visible light communication,VLC)的室内定位方法,即可见光定位(Visible light positioning,VLP)13。VLP的优点:1)其频率远高于射频信号,不易受到RFC的干扰14,这意味着VLP技术可以实现更高的定位精度;2)在一些特殊环境中,如医院和飞机场,RFC是被禁止的,VLP因不会产生射频干扰而非常适用;3)只要存在照明基础设施,VLP技术就可以提供定位服务,从而使硬件成本最小化15。VLP从接收信号特征角度主要分为:接收信号强度(Received signal strength,RSS)16,到达角度(Angle of arrival,AOA)17和到达时间(Time of arrival,TOA)18。AOA的实现通常需要不止一个光电二极管(Photodiode,PD)或专用光学器件19。基于TOA的系统需要硬件高度同步,从而增加了实施成本20。RSS使用PD直接接收,且不需要硬件时钟的同步,从而降低了成本和复杂性21,综合考虑室内定位的成本、难度和精度,基于RSS的VLP成为首选。由于RSS与发射器和接收器之间的距离相关,还与发射器的辐射角和接收器的入射角相关,文献中提出了使用3个22-26或更多1627-29PD的三维VLP系统,其可以减轻单个PD系统的倾斜问题30,同时多PD布局的角度和位置差异可以创造新的定位方法26-2731。虽然该系统在接收端需要更多的PD,但其对发射器没有任何的特殊要求32-33,并且已经显示出减少LED数量的潜力34,这也比较适合真实的室内环境。大多数办公室的LED分布非常稀疏,而单个PD的VLP系统至少需要3个LED才能完成有效定位,这意味着在现有的照明条件下需要添加额外的LED,而多PD的VLP系统则没有这个问题35

VLP定位技术可分为三大类:邻近技术、指纹技术和基于几何的技术36。邻近技术部署简单,但精度不高。基于几何的技术是通过RSS特征向量和光的衰减模型估算目标与每个LED的距离,然后使用三边测量或三角测量算法确定目标相对于LED的位置37-38。众所周知,RSS受到许多模型参数的影响,例如辐射角和入射角、模型阶数、模型类型、探测器物理面积、滤光片增益以及LED与PD之间的距离等39,因此,很难通过模型准确地估计LED与目标之间的距离,这使得基于三边测量的几何技术在VLP场景的适用性不如指纹技术。指纹技术的指纹点由PD测量到的RSS特征向量组成,该向量唯一地标识目标所在的空间位置,以此完成指纹数据库的构建,再结合分类算法实现可见光定位,因其不存在距离的计算,所以不依赖于模型参数,甚至可以在LED位置未知的情况下进行定位,这些对RSS的误差和波动具有良好的鲁棒性,文献[1340-45]报道了该VLP系统的开发以及一些初步结果,因此本文采用基于RSS的指纹定位技术。指纹定位技术在很大程度上依赖于训练指纹数据库的信号分类算法,如K最近邻(K-nearst neighbor,KNN)46-48,加权K最近邻(Weighted K-nearest neighbor,WKNN)4049,随机森林(Random forest,RF)50,支持向量机(Support vector machine,SVM)51,人工神经网络(Artificial neural networks,ANN)3952-54和极限学习机(Extreme learning machine,ELM)5355-56等,这些机器学习算法(Machine learning algorithm,MLA)已经被报道用于室内的VLP,但多PD接收方案的文献比较少,而且文献中通常显示的是基于仿真的结果57。因此,本文搭建实验平台,同时通过实验与仿真详细分析了4种具有代表性的MLA在基于多PD和RSS指纹匹配的VLP系统中的定位性能,同时详细地分析了LED个数M、PD个数N和LED发射功率Pt对定位精度的影响。在LED分布密度较低的场景下,为VLP系统的设计提供新的理论支持与实际应用参考价值,以及为MLA在多PD接收的VLP系统研究中提供应用参考。

2 系统概述

2.1 系统的硬件组成

为了实验验证MLA在多PD的VLP系统中的定位性能,搭建了一个真实的LED定位场景。前期工作表明49,在单个PD接收环境中,当LED的个数M从3增加到8时,各MLA均可以实现较低的定位误差,因此采用了4个LED作为发射器。该系统由一个100 cm×100 cm×150 cm的铝制框架,4个LED和一个可在地板上自由移动的光接收器构成,其中光接收器包括4个型号为QIAS TSL2561的PD,光接收器分别在地面,以及距离地面10 cm和20 cm的3个平面内移动,4个PD的输出分别发送到STM32 MCU的AD引脚。为了精准化指纹点和测试点,将实际定位范围为65 cm×70 cm的平面划分为5 cm×5 cm尺寸的单元格,每个单元格至少都选取一个指纹点和测试点,因此每个平面分别都选取了210个指纹点和测试点46。在整个采集过程中,4个LED固定在同一高度,其发射面与地面平面,光接收面与发射面平行且都在4个LED的有限视场(Field of view,FOV)范围内,以确保获得稳定的RSS特征向量。实验区是在框架里面,因此实验区内没有障碍物,这样可以减少多径反射的负面影响,搭建的实验平台如图1所示,具体的实验参数见表1。与文献[4958-62]一样,也采用时分多路复用技术来区分4个LED的发光功率,不同的LED发送唯一的识别(ID)码,4个LED具有同步帧,在每个帧周期内,4个LED分别使用不同的时隙传输信号,当一个LED在传输ID码时,其他LED发出恒定光强(Constant light intensity,CLI)。为了简便,设置当一个LED在传输ID码时,即在工作时,其他LED关闭62,如图2所示,在第一个时隙中,即T1时隙内关闭4个LED进行背景光强值测量,接下来在每个15 ms周期内每个LED分别进行打开与关闭,其中打开进行光强测量的时间为T2T1取值为4 ms,T2取值为2 ms。

图 1. 多光电二极管接收器的VLP系统实验装置

Fig. 1. Experimental setup of the VLP system with a multi-PD receiver

下载图片 查看所有图片

表 1. 实验参数

Table 1. Experimental parameter

ParameterReference
Indoor space unit size(L×W×H)/cm100×100×150
Plane range of receiver /cm(0,0)to(65,70)(resolution:5)
Transmitter power /W5,6,74558
Height of the receiver /cm102030
Position of four LEDs(x yz)/cm

LED1(-10,-10,120)

LED2(80,-10,120)

LED3(80,80,120)

LED4(-10,80,120)

Distance between each LED /cm90
The FOV of LED /(°)60
Distance between each PD /cm5
The FOV of PD /(°)120
The effective area of PD /cm21

查看所有表

图 2. 时分多路复用

Fig. 2. Time division multiplexing scheme

下载图片 查看所有图片

2.2 RSS指纹矩阵构造

光接收器放置在指定的F个指纹位置,N个PD分别采集来自第m个LED的RSS特征值,为了减小RSS波动造成的误差,提高指纹矩阵的精度,每个PD都循环采集100次,并去尾求平均值,以提高抗噪性能,由其构成一个RSS特征矩阵ψmRF×N,即

ψm=R1R2RF=R1,1R1,2R1,NR2,1R2,2R2,NRF,1RF,2RF,N

式中:向量Rf为第f个指纹点处,由N个PD串行采集到第m个LED的RSS特征向量(f=1,2,,Fm=1,2,,M),即

Rf=Rf,1Rf,2Rf,N

M个RSS特征矩阵ψmRF×N最终构成完整的RSS特征矩阵ϕ=ψ1ψ2ψM

3 定位算法

3.1 算法概述

考虑监督学习算法中性能较佳的非线性学习(Nonlinear learning,NL)和集成学习模型(Ensemble learning,EL)。NL方法中最经典的是KNN和以快速著称的ELM。而EL方法大致可分为两大类:一类是Boosting,最流行的版本是AdaBoost;另一类是Bagging,较先进的版本是RF。综上,本文选择了4种典型的分类器:KNN、ELM、RF和AdaBoost。

KNN46-48是通过比较测试点与每个指纹点的RSS向量之间的差异以确定目标位置。一般采用欧氏距离作为RSS向量之间的相似性指标,通过相似性从大到小排序得到前k个RSS向量的优势类别及坐标,从而确定测试点的坐标,该算法简单,但计算量大,其欧氏距离公式为

dx,y=i=1nxi-yi2

式中:dx,y为欧氏距离;x为一个测试点的RSS向量;y为一个指纹点的RSS向量;n为RSS向量的维度。

ELM63是依据广义逆(Moore-Penrose)矩阵理论提出的一类性能优良的新型单隐层前馈神经网络,设有L个隐藏神经元,有n维输入,其网络结构如图3所示,XfX分别为一个指纹点的RSS向量和类别,Wi为连接第i个隐藏神经元和输入层的权值向量,βi为连接第i个隐藏神经元和输出节点的权值向量,bi为第i个隐藏神经元的偏置,其中输入隐藏权值Wi和隐藏偏置bi随机设置,然后采用广义逆方法求解βi,建立模型,最后把测试点的RSS向量输入模型,预测出其类别及对应的坐标,该模型避免了耗时的迭代搜索和参数设置,具有良好的泛化能力,其数学模型为

fX=i=1LβigWiX+bi

式中:g为激活函数。

图 3. L个隐藏神经元的单隐层前馈神经网络

Fig. 3. Single-hidden layer feedforward network with L hidden neurons

下载图片 查看所有图片

AdaBoost64-65基本原理是将多个弱分类器整合成一个强分类器。首先,给全部的指纹点数据赋予相同的权值,训练出一个弱分类器并计算该分类器的错误率ε;然后,在全部的指纹点数据中重新调整每个指纹点数据的权重,其中第一次分对的指纹点权重将会降低,而第一次分错的指纹点权重将会升高,经过权值更新再训练出第二个弱分类器,整个训练过程如此迭代地进行下去,训练得到多个弱分类器;接着,AdaBoost为每个分类器分配一个权重α,其中α基于每个弱分类器的错误率计算得到,即错误率低的弱分类器在最终分类器中占的权重较大,否则较小,从而建立模型;最后,输入测试点数据,每个弱分类器都会判断该测试点的分类结果,通过加权投票判决,票数多的一类即为预测的最终结果。该算法非常灵活,但对异常指纹点敏感,异常指纹点在迭代中可能会获得较高的权重,影响最终预测准确性,其公式为

ε=p/qα=12ln1-ε/ε

式中:p为分错的指纹点数量;q为全部的指纹点数量。

RF4650基本原理也是通过训练多个弱分类器整合成一个强分类器。但不同于AdaBoost,RF每次都是随机且有放回地从所有指纹点数据库中抽取部分指纹点数据作为训练集,即每个弱分类器的训练集因随机抽取而不同,因有放回而同一个训练集里包含相同的指纹点数据;同时,RF最后为每个弱分类器分配的是相同的权重,即输入测试点数据时,RF的每个弱分类器都会判断该测试点的分类结果,最后对各预测结果进行投票判决,票数多的一类即为预测的最终结果。由于随机性的引入,该算法不容易过拟合且抗噪声性能好,但处理时间和计算复杂度随着迭代次数的增加而增加。

3.2 参数设置

文献[49]和[57]的研究表明,KNN的最佳邻域数K为3或4,本文K取为3;考虑到ELM中随机设置的输入隐藏权值Wi和隐藏偏置bi所引起的振荡66-67,对隐藏神经元个数进行自动寻优,范围为0到1000,步长为50,激活函数一般选用Sigmoid函数;文献[46]提到RF处理时间和计算复杂度随着迭代次数的增加而增加,因此迭代次数不能太大,本文则取50;AdaBoost学习周期取100,具体见表2

表 2. 4种机器学习算法的参数

Table 2. Parameter of the four machine learning algorithms

AlgorithmParameter
KNNDistance metric:Euclidean distance;K=3
ELM

Number neurons in input,hidden and output:16,

adaptive and 1;Activation function:Sigmoid

RFTree number:50;Weak classifier:Decision tree
AdaBoostLearning cycle:100;Weak classifier:Decision tree

查看所有表

3.3 系统模型

实验环境如图1所示,除非另作说明,否则采样间隔为5 cm,LED的个数为4,PD的个数为4。为了使实验结果更有说服力,4种MLA分别在二维和三维的定位区域中进行测试和比较,且每次定位所用的测试点均不与指纹点重合。其中,二维定位的指纹点和测试点在同一平面内,个数均为210个,预测的结果为二维坐标;三维定位的指纹点和测试点包括地面,以及距离地面10 cm和20 cm的3个平面,因此个数均为630个,预测的结果为三维坐标,其定位系统示意如图4所示。二维和三维的定位算法一样:离线阶段,ELM、RF和AdaBoost各自对构建的指纹点RSS特征向量及其对应的坐标进行训练,建立模型,KNN则不需要训练;在线阶段,把测试点的RSS特征向量输入ELM、RF和AdaBoost各自建立的模型,预测出测试点的类别及其坐标,KNN则是通过比较测试点与指纹点RSS向量的欧氏距离预测出测试点的类别及其坐标,定位算法流程如图5所示。

图 4. 定位系统示意图。(a)二维定位;(b)三维定位

Fig. 4. Conceptual architecture of positioning system. (a) 2-D positioning; (b) 3-D positioning

下载图片 查看所有图片

图 5. 定位算法流程图

Fig. 5. Positioning algorithm flow diagram

下载图片 查看所有图片

由于在可见光定位中视距(Line of sight,LOS)通信占据主要成分,因此后续的仿真结果中,为了不失一般性,同样采用LOS传输的Lambertian辐射模型68-70,即

Pr=PtArλ+12πd2cosλβTsgcos α

式中:Pr为PD的接收功率;Pt为LED的发射功率;d为LED与PD之间的距离;λ为Lambertian阶数;Ar为光检测器接收面积;βα分别为辐射角和接收角;Ts为光滤波器增益;g为聚光透镜增益。LOS Lambertian 辐射模型的参数为:Ts=g=1αFOV=π/2Ar=1 cm2λ=1,这些参数符合典型的LOS Lambertian 辐射模型参数设置,被广泛地应用于仿真参数设置中144268

在典型的室内可见光通信中,噪声通常包括散粒噪声和热噪声1449,其公式如下。

σnoise2=σshot2+σthermal2σshot2=2qRPDPrB+2qIbgI2Bσthermal2=8πkBTKG0ηAPDI2B2+16π2kBTKΓgmη2Ar2I3B3

式中:q为元电荷;RPD为PD的响应度;B为等效噪声带宽;kB为玻尔兹曼常数;TK为绝对温度;G0为开环增益;η为PD的固定电容;Ibg为背景光电流;Γ为信道噪声因子;gm为场效应晶体管的跨导,I2I3为噪声带宽因子。根据噪声模型,给出信噪比(Signal to noise ratio,SNR)为1449

fSNR=10lgRPDPr/APD2σnoise2

噪声模型的参数设置如下1449TK=295 K,G0=10,gm=30 mS,Γ=1.5,B=100 MHz,I2=0.562,I3=0.0868,RPD=0.54 A/W,η=112 pF/cm2Ibg=5100 µA。

4 仿真与实验结果分析

在以下的仿真与实验结果分析中,S-KNN、S-ELM、S-RF和S-AdaBoost表示仿真的结果,KNN、ELM、RF和AdaBoost表示实验的结果。为了不失一般性,同样采用定位误差的累积分布函数(Cumulative distribution function,CDF),平均定位误差(Average positioning error,APE)以及平均定位时间(Average positioning time,APT)参数分析仿真和实验结果,其中APE71

fAPE=t=1NXt-X˜t/N

式中:X˜t为预测坐标;Xt为实际坐标;N为测试点个数。

4.1 各机器学习算法的定位性能

1)定位误差的CDF

分别在二维和三维定位中分析了各MLA对目标的定位性能,展示了多PD的VLP系统定位精度,各MLA定位误差的CDF如图6所示。

图 6. 各算法的定位误差的CDF。(a)二维定位;(b)三维定位

Fig. 6. CDF of positioning error for different algorithms. (a) 2-D positioning; (b) 3-D positioning

下载图片 查看所有图片

在二维定位时,S-KNN、S-ELM、S-RF和S-AdaBoost的定位误差小于2 cm的概率分别为100%、93.81%、99.52%和29.52%,KNN、ELM、RF和AdaBoost的定位误差小于2 cm的概率分别为96.67%、48.57%、67.14%和15.24%;在三维定位时,S-KNN、S-ELM、S-RF和S-AdaBoost的定位误差小于2 cm的概率分别为100%、95.59%、99.29%和16.19%,KNN、ELM、RF和AdaBoost的定位误差小于2 cm的概率分别为74.52%、38.81%、59.76%和6.43%。因此无论二维或三维定位,KNN的定位性能均优于ELM、RF和AdaBoost。为了仿真和实验的测试点数据同步化,仿真和实验设置的测试点离指纹点的距离均为固定值1.414 cm,而指纹定位是把测试点匹配到最近邻的指纹点,然后以指纹点的位置坐标作为测试点坐标,所以KNN实际上实现了大多数测试点的正确分类。

2)APE

各MLA在二维和三维定位中的APE如图7所示,与定位误差累积分布的结论类似:在二维或三维定位,基于KNN的平均定位误差都最小,其中二维定位的S-KNN和KNN的平均误差分别为1.35 cm 和1.43 cm,三维定位的S-KNN和KNN的平均误差分别为1.35 cm和2.06 cm;同时也观察到,无论二维或三维定位,各算法的实验定位误差均比仿真误差大,这是因为真实场景中存在着自然光和多径反射效应,其形成的光学背景噪声降低了定位的精度。

图 7. 各算法的APE。(a)二维定位;(b)三维定位

Fig. 7. APE of different algorithms. (a) 2-D positioning; (b) 3-D positioning

下载图片 查看所有图片

3)APT

各MLA在二维和三维中的APT如表3所示,无论二维或三维定位,基于KNN和ELM的平均定位时间均较短,这意味着其计算复杂度均较低;基于RF和AdaBoost的计算复杂度均较高。综合考虑定位误差和计算复杂度可得:在小规模的网格指纹条件下,4种典型分类器中的KNN明显更适用于VLP。

表 3. 不同算法的APT

Table 3. APT of different algorithms

AlgorithmS-KNN/KNNS-ELM/ELMS-RF/RFS-AdaBoost/AdaBoost
2-D positioning APT /s0.01/0.010.01/0.050.72/1.140.98/2.43
3-D positioning APT /s0.02/0.070.05/0.325.45/6.824.45/18.41

查看所有表

4.2 LED个数M对定位精度的影响

各MLA的APE随着LED个数M的变化结果如图8所示,与大多数文献的实验结果类似49,无论二维或三维定位,当M从1增加到4时,基于KNN、RF、ELM和AdaBoost的APE都有所减少,其中,S-KNN在二维和三维定位中的APE分别下降到1.42 cm和1.35 cm,KNN在二维和三维定位中的APE分别下降到1.43 cm和2.06 cm。

图 8. M对APE的影响。(a)二维定位;(b)三维定位

Fig. 8. Impact of M on APE. (a) 2-D positioning; (b) 3-D positioning

下载图片 查看所有图片

M从4减少到3时,各MLA的定位精度下降很小;当M为2时,S-KNN的APE分别为1.35 cm和2.66 cm,KNN的APE分别为3.36 cm和3.95 cm,与文献[57]结论一样,2个LED所开发的多PD的VLP系统也可以达到相对精准的定位效果;即使只有单个LED也可以实现定位,其S-KNN的平均误差为4.26 cm和5.18 cm,KNN的平均误差为5.72 cm和7.49 cm,这意味着多PD的VLP系统有利于实际环境中LED个数比较少的情况。

4.3 PD个数N对定位精度的影响

考虑到实际环境中LED个数比较少的情况,所以选择探讨LED的个数为2时,PD个数N对定位精度的影响。

各MLA的APE随着N的变化结果如图9所示,无论二维或三维定位,当N从1增加到4时,各MLA的APE均有所减小。相比于二维定位,三维定位的误差减少更显著。这是因为与用单个PD恢复的RSS特征相比,从4个PD提取的RSS特征具有更多的信息。因此,在相同LED个数M的条件下,与使用单个PD相比,使用4个PD可以实现更高的定位精度。

图 9. N对APE的影响。(a)二维定位;(b)三维定位

Fig. 9. Impact of N on APE. (a) 2-D positioning; (b) 3-D positioning

下载图片 查看所有图片

同时在二维定位中发现,基于AdaBoost的实验结果在N为2时和基于ELM的仿真结果在N为3时定位性能存在轻微振荡的现象。前者是由于AdaBoost对异常指纹点敏感,实验数据类别较多而样本有限导致其鲁棒性受到影响65;后者是由于ELM的输入隐藏权值Wi和隐藏偏置bi的随机设置导致其定位性能的振荡66-67

4.4 发射功率Pt对定位精度的影响

文献[49]从仿真角度分析了MLA在LED发射功率Pt为1~6 W范围内的APE,结果表明随着Pt的增大,APE减小,这是因为Pt的增大提高了信噪比,从而减小了APE。从仿真和实验角度均发现,当Pt从5 W增加到7 W时,各MLA的APE变化不大,这说明所搭建的多PD的VLP系统在Pt为5 W时,各MLA的APE已经接近收敛,因此即使在LED较低的发射功率Pt下,采用本文的实验方案依然可以实现较高的定位精度,具体如图10所示。与图9一样,由图10可知:由于AdaBoost对异常指纹点敏感,其实验结果出现轻微振荡的现象;由于ELM的输入隐藏权值Wi和隐藏偏置bi的随机设置,其仿真和实验结果均出现轻微振荡的现象。

图 10. Pt对APE的影响。(a)二维定位;(b)三维定位

Fig. 10. Impact of Pt on APE. (a) 2-D positioning; (b) 3-D positioning

下载图片 查看所有图片

5 结论

搭建了多PD的VLP实验平台,避免了单个PD的倾斜问题,同时采用RSS指纹定位技术代替几何技术,通过仿真与实验验证了现有的不同MLA的定位性能。结果发现:无论是二维或三维定位,基于KNN的指纹匹配定位的精度均优于RF、ELM和AdaBoost;而ELM在定位时间上有优势;RF比较稳定,但计算复杂度比较高。同时详细分析了LED个数,PD个数和LED发射功率对定位误差的影响,实验结果表明:无论是二维或三维定位,LED和PD个数的增加均有效地减小了定位误差,而且当LED的发射功率为5 W时即可实现定位误差的收敛,这是因为结合多PD接收技术,与单PD相比,接收端可以采集到更多的RSS信息,因此即使在LED低发射功率下,依然可以取得较高的定位精度,这为LED分布密度较低时VLP系统的设计提供新的理论支持和实际参考价值,以及为MLA在多PD接收的VLP系统研究提供应用参考。

鉴于ELM能快速定位的优势,而群体智能方法被证明是优化人工神经网络和模型参数的有效工具,因此可以结合群体智能方法以提高ELM的分类精度;同时对于MLA而言,指纹库的准确性和密集性非常重要,因此,开发一种自动且精准的室内位置指纹采集系统也是未来一个有趣的研究方向。

参考文献

[1] RidhawiI A, AloqailyM. A policy-based location-aware framework for personalized services in cloud computing systems[C]∥2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies, November 3-5, 2015, Amman, Jordan. New York: IEEE Press, 2015.

[2] LingR W C, GuptaA, VashisthaA, et al. High precision UWB-IR indoor positioning system for IoT applications[C]∥2018 IEEE 4th World Forum on Internet of Things, February 5-8, 2018, Singapore. New York: IEEE Press, 2018: 135-139.

[3] Jang B, Kim H. Indoor positioning technologies without offline fingerprinting map: a survey[J]. IEEE Communications Surveys & Tutorials, 2019, 21(1): 508-525.

[4] Zafari F, Gkelias A, Leung K K. A survey of indoor localization systems and technologies[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2568-2599.

[5] 李方敏, 张韬, 刘凯, 等. 基于距离测量和位置指纹的室内定位方法研究[J]. 计算机学报, 2019, 42(2): 109-120.

    Li F M, Zhang T, Liu K, et al. An indoor positioning method based on range measuring and location fingerprinting[J]. Chinese Journal of Computers, 2019, 42(2): 109-120.

[6] He S N, Chan S H G. Wi-Fi fingerprint-based indoor positioning: recent advances and comparisons[J]. IEEE Communications Surveys & Tutorials, 2016, 18(1): 466-490.

[7] Wang C Z, Shi Z C, Wu F. Intelligent RFID indoor localization system using a Gaussian filtering based extreme learning machine[J]. Symmetry, 2017, 9(3): 30.

[8] Dinh T M T, Duong N S, Sandrasegaran K. Smartphone-based indoor positioning using BLE iBeacon and reliable lightweight fingerprint map[J]. IEEE Sensors Journal, 2020, 20(17): 10283-10294.

[9] Bianchi V, Ciampolini P, de Munari I. RSSI-based indoor localization and identification for ZigBee wireless sensor networks in smart homes[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(2): 566-575.

[10] Carotenuto R, Merenda M, Iero D, et al. An indoor ultrasonic system for autonomous 3-D positioning[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(7): 2507-2518.

[11] LiR B, LiuJ Y, ZhangL, et al. LIDAR/MEMS IMU integrated navigation (SLAM) method for a small UAV in indoor environments[C]∥2014 DGON Inertial Sensors and Systems (ISS), September 16-17, 2014, Karlsruhe, Germany. New York: IEEE Press, 2014.

[12] DavisonA J. Real-time simultaneous localisation and mapping with a single camera[C]∥Proceedings Ninth IEEE International Conference on Computer Vision, October 13-16, 2003, Nice, France. New York: IEEE Press, 2003: 1403-1410.

[13] Zhuang Y, Hua L C, Qi L N, et al. A survey of positioning systems using visible LED lights[J]. IEEE Communications Surveys & Tutorials, 2018, 20(3): 1963-1988.

[14] Komine T, Nakagawa M. Fundamental analysis for visible-light communication system using LED lights[J]. IEEE Transactions on Consumer Electronics, 2004, 50(1): 100-107.

[15] Gu W J, Zhang W Z, Kavehrad M, et al. Three-dimensional light positioning algorithm with filtering techniques for indoor environments[J]. Optical Engineering, 2014, 53(10): 107107.

[16] Xie B, Chen K Y, Tan G, et al. LIPS: a light intensity: based positioning system for indoor environments[J]. ACM Transactions on Sensor Networks, 2016, 12(4): 28.

[17] KuoY S, PannutoP, HsiaoK J, et al. Luxapose: indoor positioning with mobile phones and visible light[C]∥MobiCom'14: Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, September 7-11, Maui, HI, USA. New York: ACM Press, 2014: 447-458.

[18] AkiyamaT, SugimotoM, HashizumeH. Time-of-arrival-based smartphone localization using visible light communication[C]∥2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), September 18-21, 2017, Sapporo, Japan. New York: IEEE Press, 2017.

[19] SharifiH, KumarA, AlamF, et al. Indoor localization of mobile robot with visible light communication[C]∥2016 12th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), August 29-31, 2016, Auckland, New Zealand. New York: IEEE Press, 2016.

[20] LeeS, JungS Y. Location awareness using Angle-of-arrival based circular-PD-array for visible light communication[C]∥2012 18th Asia-Pacific Conference on Communications (APCC), October 15-17, 2012, Jeju Island. New York: IEEE Press, 2012: 480-485.

[21] NahJ H Y, ParthibanR, JawardM H. Visible Light Communications localization using TDOA-based coherent heterodyne detection[C]∥2013 IEEE 4th International Conference on Photonics, October 28-30, 2013, Melaka, Malaysia. New York: IEEE Press, 2013: 247-249.

[22] NazA, HassanN U, PashaM A, et al. Single LED ceiling lamp based indoor positioning system[C]∥2018 IEEE 4th World Forum on Internet of Things, February 5-8, 2018, Singapore. New York: IEEE Press, 2018: 682-687.

[23] Yang S H, Jung E M, Han S K. Indoor location estimation based on LED visible light communication using multiple optical receivers[J]. IEEE Communications Letters, 2013, 17(9): 1834-1837.

[24] Xu W, Wang J, Shen H, et al. Indoor positioning for multiphotodiode device using visible-light communications[J]. IEEE Photonics Journal, 2016, 8(1): 7900511.

[25] Yu X H, Wang J P, Lu H M. Single LED-based indoor positioning system using multiple photodetectors[J]. IEEE Photonics Journal, 2018, 10(6): 7909108.

[26] Yang S H, Kim H S, Son Y H, et al. Three-dimensional visible light indoor localization using AOA and RSS with multiple optical receivers[J]. Journal of Lightwave Technology, 2014, 32(14): 2480-2485.

[27] Yasir M, Ho S W, Vellambi B N. Indoor position tracking using multiple optical receivers[J]. Journal of Lightwave Technology, 2016, 34(4): 1166-1176.

[28] YuX H, WangJ P, LuH M. Indoor positioning system based on single LED using symmetrical optical receiver[C]∥2018 Asia Communications and Photonics Conference (ACP), October 26-29, 2018, Hangzhou, China. New York: IEEE Press, 2018.

[29] WangL X, GuoC L. Indoor visible light localization algorithm with multi-directional PD array[C]∥2017 IEEE Globecom Workshops, December 4-8, 2017, Singapore. New York: IEEE Press, 2017.

[30] Jeong E M, Yang S H, Kim H S, et al. Tilted receiver angle error compensated indoor positioning system based on visible light communication[J]. Electronics Letters, 2013, 49(14): 890-892.

[31] Xu Y F, Zhao J Q, Shi J Y, et al. Reversed three-dimensional visible light indoor positioning utilizing annular receivers with multi-photodiodes[J]. Sensors, 2016, 16(8): 1254.

[32] Plets D, Almadani Y, Bastiaens S, et al. Efficient 3D trilateration algorithm for visible light positioning[J]. Journal of Optics, 2019, 21(5): 05LT01.

[33] PletsD, BastiaensS, IjazM, et al. Three-dimensional visible light positioning: an experimental assessment of the importance of the LEDs’ locations[C]∥2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN), September 30-October 3, 2019, Pisa, Italy. New York: IEEE Press, 2019.

[34] Li Q L, Wang J Y, Huang T, et al. Three-dimensional indoor visible light positioning system with a single transmitter and a single tilted receiver[J]. Optical Engineering, 2016, 55(10): 106103.

[35] Shen S Q, Li S Y, Steendam H. Simultaneous position and orientation estimation for visible light systems with multiple LEDs and multiple PDs[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1866-1879.

[36] Do T H, Yoo M. An in-depth survey of visible light communication based positioning systems[J]. Sensors, 2016, 16(5): 678.

[37] Zhou B P, Lau V, Chen Q C, et al. Simultaneous positioning and orientating for visible light communications: algorithm design and performance analysis[J]. IEEE Transactions on Vehicular Technology, 2018, 67(12): 11790-11804.

[38] Wu Y X, Liu X W, Guan W P, et al. High-speed 3D indoor localization system based on visible light communication using differential evolution algorithm[J]. Optics Communications, 2018, 424: 177-189.

[39] Kim H S, Kim D R, Yang S H, et al. An indoor visible light communication positioning system using a RF carrier allocation technique[J]. Journal of Lightwave Technology, 2013, 31(1): 134-144.

[40] Alam F, Chew M T, Wenge T, et al. An accurate visible light positioning system using regenerated fingerprint database based on calibrated propagation model[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(8): 2714-2723.

[41] 徐世武, 吴怡, 苏国栋. 基于正交频分复用调制的可见光通信指纹匹配定位算法[J]. 激光与光电子学进展, 2019, 56(9): 090601.

    Xu S W, Wu Y, Su G D. Fingerprint matching and localization algorithm based on orthogonal frequency division multiplexing modulation for visible light communication[J]. Laser & Optoelectronics Progress, 2019, 56(9): 090601.

[42] 徐世武, 吴怡, 王徐芳. 基于稀疏度自适应和位置指纹的可见光定位算法[J]. 光学学报, 2020, 40(18): 1806003.

    Xu S W, Wu Y, Wang X F. Visible light positioning algorithm based on sparsity adaptive and location fingerprinting[J]. Acta Optica Sinica, 2020, 40(18): 1806003.

[43] 许浩, 王旭东, 吴楠. 基于卷积神经网络的室内可见光指纹定位方法[J]. 激光与光电子学进展, 2021, 58(17): 1706008.

    Xu H, Wang X D, Wu N. Indoor visible light fingerprint positioning scheme based on convolution neural network[J]. Laser & Optoelectronics Progress, 2021, 58(17): 1706008.

[44] 赵楚韩, 张洪明, 宋健. 基于指纹的室内可见光定位方法[J]. 中国激光, 2018, 45(8): 0806002.

    Zhao C H, Zhang H M, Song J. Fingerprint based visible light indoor localization method[J]. Chinese Journal of Lasers, 2018, 45(8): 0806002.

[45] WengeT, ChewM T, AlamF, et al. Implementation of a visible light based indoor localization system[C]∥2018 IEEE Sensors Applications Symposium, March 12-14, 2018, Seoul, Korea (South). New York: IEEE Press, 2018.

[46] Guo X S, Shao S H, Ansari N, et al. Indoor localization using visible light via fusion of multiple classifiers[J]. IEEE Photonics Journal, 2017, 9(6): 7803716.

[47] BishopC M. Pattern recognition and machine learning[M]. New York: Springer, 2006.

[48] Van M T, van Tuan N, Son T T, et al. Weighted k-nearest neighbour model for indoor VLC positioning[J]. IET Communications, 2017, 11(6): 864-871.

[49] Xu S W, Chen C C, Wu Y, et al. Adaptive residual weighted K-nearest neighbor fingerprint positioning algorithm based on visible light communication[J]. Sensors, 2020, 20(16): 4432.

[50] Jiang J J, Guan W P, Chen Z N, et al. Indoor high-precision three-dimensional positioning algorithm based on visible light communication and fingerprinting using K-means and random forest[J]. Optical Engineering, 2019, 58(1): 016102.

[51] Brunato M, Battiti R. Statistical learning theory for location fingerprinting in wireless LANs[J]. Computer Networks, 2005, 47(6): 825-845.

[52] LiuP X, MaoT Q, MaK, et al. Three-dimensional visible light positioning using regression neural network[C]∥2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), June 24-28, 2019, Tangier, Morocco. New York: IEEE Press, 2019: 156-160.

[53] Alonso-González I, Sánchez-Rodríguez D, Ley-Bosch C, et al. Discrete indoor three-dimensional localization system based on neural networks using visible light communication[J]. Sensors, 2018, 18(4): 1040.

[54] ZhangS, DuP F, ChenC, et al. 3D indoor visible light positioning system using RSS ratio with neural network[C]∥2018 23rd Opto-Electronics and Communications Conference (OECC), July 2-6, 2018, Jeju, Korea (South). New York: IEEE Press, 2018.

[55] Chen Y R, Guan W P, Li J Y, et al. Indoor real-time 3-D visible light positioning system using fingerprinting and extreme learning machine[J]. IEEE Access, 2020, 8: 13875-13886.

[56] 刘开华, 鄢书丹, 宫霄霖. 基于稀疏训练点和指纹重构的室内可见光三维定位算法[J]. 中国激光, 2021, 48(3): 0306003.

    Liu K H, Yan S D, Gong X L. Indoor 3D visible light positioning algorithm based on fingerprint reconstruction and sparse training nodes[J]. Chinese Journal of Lasers, 2021, 48(3): 0306003.

[57] Bakar A H A, Glass T, Tee H Y, et al. Accurate visible light positioning using multiple-photodiode receiver and machine learning[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 7500812.

[58] Pham N Q, Rachim V P, Chung W Y. High-accuracy VLC-based indoor positioning system using multi-level modulation[J]. Optics Express, 2019, 27(5): 7568-7584.

[59] Hou Y N, Xiao S L, Zheng H F, et al. Multiple access scheme based on block encoding time division multiplexing in an indoor positioning system using visible light[J]. Journal of Optical Communications and Networking, 2015, 7(5): 489-495.

[60] Gu W J, Aminikashani M, Deng P, et al. Impact of multipath reflections on the performance of indoor visible light positioning systems[J]. Journal of Lightwave Technology, 2016, 34(10): 2578-2587.

[61] Yasir M, Ho S W, Vellambi B N. Indoor positioning system using visible light and accelerometer[J]. Journal of Lightwave Technology, 2014, 32(19): 3306-3316.

[62] Tran H Q, Ha C. High precision weighted optimum K-nearest neighbors algorithm for indoor visible light positioning applications[J]. IEEE Access, 2020, 8: 114597-114607.

[63] Huang G B, Zhou H M, Ding X J, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2012, 42(2): 513-529.

[64] Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139.

[65] 哈林顿·皮特. 机器学习实战. 李锐, 李鹏, 曲亚东, 王斌, 等, 译[M]. 北京: 人民邮电出版社, 2013.

    PeterH. Machine learning in action. Li R, Li P, Qu Y D, et al., Transl[M]. Beijing: Posts & Telecom Press, 2013.

[66] Wang W H, Liu X Y. The selection of input weights of extreme learning machine: a sample structure preserving point of view[J]. Neurocomputing, 2017, 261: 28-36.

[67] Feng Z K, Niu W J, Tang Z Y, et al. Monthly runoff time series prediction by variational mode decomposition and support vector machine based on quantum-behaved particle swarm optimization[J]. Journal of Hydrology, 2020, 583: 124627.

[68] 徐世武, 吴怡, 王徐芳. 基于粒子群优化压缩感知的可见光定位算法[J]. 中国激光, 2021, 48(3): 0306004.

    Xu S W, Wu Y, Wang X F. Visible light positioning algorithm based on particle swarm optimization compressed sensing[J]. Chinese Journal of Lasers, 2021, 48(3): 0306004.

[69] 张慧颖, 于海越, 王凯, 等. 基于KPCA-K-means++和GA-LMS模型的改进RBF神经网络室内可见光定位[J]. 光学学报, 2021(19): 1906001.

    Zhang H Y, Yu H Y, Wang K, et al. Indoor visible light positioning of improved RBF neural network based on KPCA-K-means++ and GA-LMS model[J]. Acta Optica Sinica, 2021(19): 1906001.

[70] 赵黎, 韩中达, 张峰. 基于神经网络的可见光室内立体定位研究[J]. 中国激光, 2021, 48(7): 0706004.

    Zhao L, Han Z D, Zhang F. Research on stereo location in visible light room based on neural network[J]. Chinese Journal of Lasers, 2021, 48(7): 0706004.

[71] Zhang R, Zhong W D, Qian K M, et al. A reversed visible light multitarget localization system via sparse matrix reconstruction[J]. IEEE Internet of Things Journal, 2018, 5(5): 4223-4230.

魏芬, 吴怡, 徐世武. 基于机器学习与多光电二极管的可见光定位实验研究[J]. 激光与光电子学进展, 2023, 60(7): 0723002. Fen Wei, Yi Wu, Shiwu Xu. Experimental Research on Visible Light Positioning Using Machine Learning and Multi-Photodiode[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0723002.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!