激光技术, 2023, 47 (6): 866, 网络出版: 2023-12-05  

多步旋涂CsPbBr3薄膜复光学常数的椭偏光谱研究

Spectroscopic ellipsometry study of complex optical constants of multistep spin-coating CsPbBr3 films
作者单位
曲阜师范大学 物理工程学院 物理系,曲阜 273165
摘要
为了研究多步旋涂法制备的CsPbBr3薄膜的光学常数,以溴化铅和溴化铯为原料,采用多步旋涂法在硅和FTO衬底上制得CsPbBr3薄膜。利用光弹调制式椭偏光谱仪对硅衬底上的薄膜进行了椭偏光谱分析,使用Tanguy和Tauc-Lorentz 3组合模型对变角度的椭偏光谱进行参数拟合,得到了薄膜光学常数在1.00 eV~5.00 eV范围内的色散关系,并利用荧光发射光谱、吸收谱验证椭偏拟合结果。结果表明,多步旋涂法制备的CsPbBr3薄膜的光学常数与其它方法相比具有一定的差异性,其中折射率可能与薄膜表面粗糙度呈负相关; 椭偏拟合所得带隙为2.3 eV,验证了荧光光谱、吸收谱的计算结果。该研究为多步旋涂法制备的CsPbBr3薄膜椭偏光谱拟合分析提供了参考。
Abstract
For the purpose of studying the optical constants of CsPbBr3 films prepared by the multi-step spin coating method, CsPbBr3 films were prepared on silicon and SnO2∶F (FTO) substrates by the multi-step spin-coating with lead bromide and cesium bromide as raw materials. The ellipsometric spectrum of films on silicon substrate was achieved by a photoelastic modulating ellipsometry spectrometer. The parameters of the ellipsometric spectrum were fitted by using the combination model of Tanguy and Tauc-Lorentz three oscillators, and the dispersion relationship of the optical constants of thin films in the range of 1.00 eV~5.00 eV was obtained. Fluorescence emission spectra and absorption spectra were used to verify the ellipsometry fitting results. The results show that the optical constants of CsPbBr3 films prepared by the multi-step spin coating method are different from those of other methods, and the refractive index may be negatively correlated with the surface roughness of the films. The band gap obtained by ellipsometry fitting is 2.3 eV, which verifies the results of fluorescence spectra and absorption spectra. This study provides a reference for the fitting analysis of the ellipsometry spectra of CsPbBr3 films prepared by multi-step spin coating.
参考文献

[1] TANG K Ch, YOU P, YAN F. Highly stable all-inorganic perovskite solar cells processed at low temperature[J]. Solar RRL, 2018, 2(8): 1800075.

[2] YANG L L, WANG T, MIN Q H, et al. High water resistance of monoclinic CsPbBr3 nanocry-stals derived from zero-dimensional cesium lead halide perovskites[J]. ACS Omega, 2019, 4(3): 6084-6091.

[3] PAN A Zh, MA X Q, HUANG Sh Y, et al. CsPbBr3 perovskite nanocrystal grown on MXene nanosheets for enhanced photoelectric detection and photocatalytic CO2 reduction[J]. The Journal of Physical Chemistry Letters, 2019, 10(21): 6590-6597.

[4] GUPTA S, KULBAK M, CAHEN D. Pin-hole-free, homogeneous, pure CsPbBr3 films onflat substrates by simple spin-coating modification[J]. Frontiers in Energy Research, 2020, 8: 100.

[5] WANG Sh B, CAO F X, SUN W H, et al. A green bi-solvent system for processing high-quality CsPbBr3 films in efficient all-inorganic pe-rovskite solar cells[J]. Materials Tod-ay Physics, 2022, 22: 100614.

[6] JEON N J, NA H, JUNG E H, et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells[J]. Nature Energy, 2018, 3(8): 682-689.

[7] TURREN-CRUZ S H, HAGFELDT A, SALIBA M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture[J]. Science, 2018, 362(6413):449-453.

[8] KIM B W, HEO J H, PARK J K, et al.Morphology controlled nanocrystalline CsPbBr3 thin-film for metal halide perovskite light emitting diodes[J]. Journal of Industrial and Engineering Chemistry, 2021, 97: 417-425.

[9] LIU J M, ZHU L Q, XIANG S S, et al. Growing high-quality CsPbBr3 by using porous CsPb2Br5 as an intermediate: A promising light absorber in carbon-based perovskite sol-ar cells[J]. Sustainable E-nergy Fuels, 2019, 3: 184-194.

[10] LI H H, CUI Ch C, XU X P, et al. A review of characterization of perovskite film in solar cells by spectroscopic ellipsometry[J]. Solar Energy, 2020, 212: 48-61.

[11] ZHAO M L, SHI Y J, DAI J, et al. Ellipsometric study of the complex optical constants of a CsPbBr3 perovskite thin film[J]. Journal of Materials Chemistry, 2018, C6(39): 10450-10455.

[12] YAN W Sh, MAO L Y, ZHAO P Y, et al. Determination of complex optical constantsand photovoltaic device design of allinorganic CsPbBr3 perovskite thin films[J]. Optics Express, 2020, 28(10): 15706-15717.

[13] CHEN Ch, WU D, YUAN M, et al. Spectroscopic ellipsometry study of CsPbBr3 perovskite thin films prepared by vacuum evaporation[J]. Journal of Physics, 2021, D54(22): 224002.

[14] DUAN J L, ZHAO Y Y, HE B L, et al. High-purity inorganic perovskite films for solar cells with 9.72% efficiency[J]. Angewandte Chemie, 2018, 57(14): 3787-3791.

[15] GAO B W, MENG J. High efficiently CsPbBr3 perovskite solar cells fabricated by multi-step spin coating method[J]. Solar Energy, 2020, 211: 1223-1229.

[16] HU X X. The microstructure and optical & electrical properties of the Cu50Zr50 thin film metallic glasses[D]. Harbin: Harbin Institute of Technology, 2018: 14-15(in Chinese).

[17] SUN X J, HAN P G, JUAN F Y, et al. Analysis of optical constants of TiO2 thin film based on in-situ common angle ellipsometry and reflection[J]. Laser Technology, 2022, 46(2): 288-292(in Chin-ese).

[18] EL HAIMEUR A, MAKHA M, BAKKALI H, et al. Enhanced performance of planar perovskite solar cells using dip-coated TiO2 as electron transporting layer[J]. Solar Energy, 2020, 195:475-482.

[19] OCHOA-MARTINEZ E, NAVARRETE-ASTORGA E, RAMOS-BARRADO J, et al. Evolution of Al∶ZnO optical response as a function of doping level[J]. Applied Surface Science, 2017, 421: 680-686.

[20] POSTAVA K, GAO Y Z, GONG X Y, et al. Spectroscopic ellipsometry of anodized layer on single crystal InAsSb layer grown by melt epitaxy[J]. Physica Status Solidic, 2008, 5(5): 1316-1319.

[21] HEIDRICH K, KUNZEL H, TREUSCH J. Optical properties and electronic structure of CsPbCl3 and CsPbBr3[J]. Solid State Communications, 1978, 25(11): 887-889.

[22] KONDO S, TANAKA H, SAITO T. Optical absorption and localized electronic states in amorphous CsPbX3, PbX2 and TlX (X=Cl, Br)[J]. Journal of Physics: Condensed Matter, 1999, 11: 41.

[23] YAN J H, HOU Sh Ch, LI X Y, et al. Preparation of highly efficient and stable CsPbBr3 perovskite solar cells based on an anti-solvent rinsing strategy[J]. Solar Energy Materials and Solar Cells, 2022, 234: 111420.

[24] KUMAR Y, SINGH V, PANDEY A, et al. Synthesis, characterization and antibacterial activity of ZnO nanoparticles[J].AIP Confe-rence Proceedings, 2020, 2265(1): 030119.

[25] ZHANG J W, HE G, LI T S, et al. Modulation of microstructure and optical properties of Mo-doped ZnO thin films by substrate temperature[J]. Materials Research Bulletin, 2015, 65: 7-13.

管悦, 韩培高, 孙晓娟, 王梦茹, 杨军营. 多步旋涂CsPbBr3薄膜复光学常数的椭偏光谱研究[J]. 激光技术, 2023, 47(6): 866. GUAN Yue, HAN Peigao, SUN Xiaojuan, WANG Mengru, YANG Junying. Spectroscopic ellipsometry study of complex optical constants of multistep spin-coating CsPbBr3 films[J]. Laser Technology, 2023, 47(6): 866.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!