光学 精密工程, 2020, 28 (8): 1661, 网络出版: 2020-11-02   

偏振光传感器的无人船导航与编队应用

Application of polarization sensor to unmanned surface vehicle navigation and formation
作者单位
大连理工大学 机械工程学院, 辽宁 大连 116024
摘要
为了实现偏振光传感器在水面波动环境下及编队协同情境下的应用, 并提升无人船导航的抗电磁干扰能力, 设计了一种基于偏振光传感器、微惯性测量单元(MIMU)及全球定位系统(GPS)的组合导航系统, 为偏振光传感器集成了云台底座, 并搭建偏振光无人船平台进行了导航及编队实验。介绍了偏振光导航原理及无人船编队原理; 基于卡尔曼滤波设计了偏振光传感器/MIMU/GPS组合导航算法; 基于上述组合导航算法进行了无人船的循迹与编队实验。循迹对比实验结果表明: 无人船利用偏振光传感器进行组合导航的航向角误差为6.055°, 位置误差为0.209 m, 在磁罗盘受干扰的情况下偏振光组合导航系统仍可正常工作; 编队实验结果表明: 领航船循迹误差为0.425 m,跟随船编队误差为0.707 m。该偏振光传感器可应用于水面环境导航, 偏振光组合导航系统可用于无人船导航与编队。
Abstract
It is necessary to improve the anti-electromagnetic interference ability of unmanned surface vehicle(USV) navigation; one method is to apply polarization sensors in fluctuant water environments and formation coordination.In this study, an integrated navigation system was designed based on a polarization sensor, micro inertial measurement unit (MIMU), and global positioning system (GPS). A gimbal was mounted for the polarization sensor, and a USV experimental platform was built for navigation and formation experiments. First, the principle of polarized light navigation and USV formation were introduced.Subsequently, the integrated navigation system with a polarization sensor was designed based on Kalman filtering. Finally, tracking and formation of USV experiments were performed based on the integrated navigation system. The results of the tracking experiment show that the heading angle error and position error of the polarization sensor/MIMU/GPS integrated navigation system are 6.055° and 0.209 m, respectively.The polarized light integrated navigation system could work normally even if the magnetic compass was disturbed. The results of the formation experiment show that the leader tracking error is 0.425 m, and the follower formation error is 0.707 m. The polarization sensor can be used in fluctuant water circumstance navigation, and the polarized light integrated navigation system can be used in USV navigation and formation.
参考文献

[1] YUH J, MARANI G, BLIDBERG D R. Applications of marine robotic vehicles[J]. Intelligent Service Robotics, 2011, 4(4): 221-231.

    YUH J, MARANI G, BLIDBERG D R. Applications of marine robotic vehicles[J]. Intelligent Service Robotics, 2011, 4(4): 221-231.

[2] LIU Z X, ZHANG Y M, YU X, et al.. Unmanned surface vehicles: an overview of developments and challenges[J]. Annual Reviews in Control, 2016, 41: 71-93.

    LIU Z X, ZHANG Y M, YU X, et al.. Unmanned surface vehicles: an overview of developments and challenges[J]. Annual Reviews in Control, 2016, 41: 71-93.

[3] BORENSTEIN J, EVERETT H R, FENG L, et al.. Mobile robot positioning: Sensors and techniques[J]. Journal of Robotic Systems, 1997, 14(4): 231-249.

    BORENSTEIN J, EVERETT H R, FENG L, et al.. Mobile robot positioning: Sensors and techniques[J]. Journal of Robotic Systems, 1997, 14(4): 231-249.

[4] BIBULI M, BRUZZONE G, CACCIA M, et al.. Path-following algorithms and experiments for an unmanned surface vehicle[J]. Journal of Field Robotics, 2009, 26(8): 669-688.

    BIBULI M, BRUZZONE G, CACCIA M, et al.. Path-following algorithms and experiments for an unmanned surface vehicle[J]. Journal of Field Robotics, 2009, 26(8): 669-688.

[5] MOSTAFA M Z, KHATER H A, RIZK M R, et al.. A novel GPS/ RAVO/MEMS-INS smartphone-sensor-integrated method to enhance USV navigation systems during GPS outages[J]. Measurement Science and Technology, 2019, 30(9): 095103.

    MOSTAFA M Z, KHATER H A, RIZK M R, et al.. A novel GPS/ RAVO/MEMS-INS smartphone-sensor-integrated method to enhance USV navigation systems during GPS outages[J]. Measurement Science and Technology, 2019, 30(9): 095103.

[6] NAUS K, MARCHEL . Use of a weighted ICP algorithm to precisely determine USV movement parameters[J]. Applied Sciences, 2019, 9(17): 3530.

    NAUS K, MARCHEL . Use of a weighted ICP algorithm to precisely determine USV movement parameters[J]. Applied Sciences, 2019, 9(17): 3530.

[7] SNYDER J. Doppler Velocity Log (DVL) navigation for observation-class ROVs[C]. Oceans 2010 Mts/Ieee Seattle, 20-23 Sept. 2010, Seattle, WA, USA. IEEE, 2010: 1-9.

    SNYDER J. Doppler Velocity Log (DVL) navigation for observation-class ROVs[C]. Oceans 2010 Mts/Ieee Seattle, 20-23 Sept. 2010, Seattle, WA, USA. IEEE, 2010: 1-9.

[8] WEON, IHN-SIK. Obstacle avoidance of unmanned surface vehicle based on 3D lidar for VFH algorithm[J]. Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, 2018, 8(3): 945-953.

    WEON, IHN-SIK. Obstacle avoidance of unmanned surface vehicle based on 3D lidar for VFH algorithm[J]. Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, 2018, 8(3): 945-953.

[9] 王贵槐, 谢朔, 柳晨光, 等. 基于激光雷达的内河无人船障碍物识别方法[J]. 光学技术, 2018, 44(5): 602-608.

    王贵槐, 谢朔, 柳晨光, 等. 基于激光雷达的内河无人船障碍物识别方法[J]. 光学技术, 2018, 44(5): 602-608.

    WANG G H, XIE S, LIU CH G, et al.. Obstacle identification method based on laser radar for inland unmanned vessel[J]. Optical Technique, 2018, 44(5): 602-608.(in Chinese)

    WANG G H, XIE S, LIU CH G, et al.. Obstacle identification method based on laser radar for inland unmanned vessel[J]. Optical Technique, 2018, 44(5): 602-608.(in Chinese)

[10] WITZE A. Earth′s magnetic field is acting up and geologists don′t know why[J]. Nature, 2019, 565(7738): 143-144.

    WITZE A. Earth′s magnetic field is acting up and geologists don′t know why[J]. Nature, 2019, 565(7738): 143-144.

[11] V FRISCH K. Die polarisation des himmelslichtes als orientierender faktor bei den Tnzen der Bienen[J]. Experientia, 1949, 5(4): 142-148.

    V FRISCH K. Die polarisation des himmelslichtes als orientierender faktor bei den Tnzen der Bienen[J]. Experientia, 1949, 5(4): 142-148.

[12] LAMBRINOS D, MLLER R, LABHART T, et al.. A mobile robot employing insect strategies for navigation[J]. Robotics and Autonomous Systems, 2000, 30(1/2): 39-64.

    LAMBRINOS D, MLLER R, LABHART T, et al.. A mobile robot employing insect strategies for navigation[J]. Robotics and Autonomous Systems, 2000, 30(1/2): 39-64.

[13] CHU J K, ZHAO K C, ZHANG Q, et al.. Construction and performance test of a novel polarization sensor for navigation[J]. Sensors and Actuators A: Physical, 2008, 148(1): 75-82.

    CHU J K, ZHAO K C, ZHANG Q, et al.. Construction and performance test of a novel polarization sensor for navigation[J]. Sensors and Actuators A: Physical, 2008, 148(1): 75-82.

[14] 褚金奎, 陈文静, 王洪青, 等. 基于偏振光传感器的移动机器人导航实验[J]. 光学 精密工程, 2011, 19(10): 2419-2426.

    褚金奎, 陈文静, 王洪青, 等. 基于偏振光传感器的移动机器人导航实验[J]. 光学 精密工程, 2011, 19(10): 2419-2426.

    CHU J K, CHEN W J, WANG H Q, et al.. Mobile robot navigation tests with polarization sensors[J]. Opt. Precision Eng., 2011, 19(10): 2419-2426.(in Chinese)

    CHU J K, CHEN W J, WANG H Q, et al.. Mobile robot navigation tests with polarization sensors[J]. Opt. Precision Eng., 2011, 19(10): 2419-2426.(in Chinese)

[15] CHAHL J, MIZUTANI A. Biomimetic attitude and orientation sensors[J]. IEEE Sensors Journal, 2012, 12(2): 289-297.

    CHAHL J, MIZUTANI A. Biomimetic attitude and orientation sensors[J]. IEEE Sensors Journal, 2012, 12(2): 289-297.

[16] FAN C, HU X P, HE X F, et al.. Integrated polarized skylight sensor and MIMU with a metric map for urban ground navigation[J]. IEEE Sensors Journal, 2017, 18(4): 1714-1722.

    FAN C, HU X P, HE X F, et al.. Integrated polarized skylight sensor and MIMU with a metric map for urban ground navigation[J]. IEEE Sensors Journal, 2017, 18(4): 1714-1722.

[17] JULIEN D, JULIEN S, STPHANE V. A hexapod walking robot mimicking navigation strategies of desert ants cataglyphis [C]. Conference on Biomimetic and Biohybrid Systems, Paris, P.R. Switzerland: Springer Cham, 2018: 145-156.

    JULIEN D, JULIEN S, STPHANE V. A hexapod walking robot mimicking navigation strategies of desert ants cataglyphis [C]. Conference on Biomimetic and Biohybrid Systems, Paris, P.R. Switzerland: Springer Cham, 2018: 145-156.

[18] 褚金奎, 张慧霞, 王寅龙, 等. 多方向偏振光实时定位样机的设计与搭建[J]. 光学 精密工程, 2017, 25(2): 312-318.

    褚金奎, 张慧霞, 王寅龙, 等. 多方向偏振光实时定位样机的设计与搭建[J]. 光学 精密工程, 2017, 25(2): 312-318.

    CHU J K, ZHANG H X, WANG Y L, et al.. Design and construction of autonomous real-time position prototype based on multi-polarized skylight[J]. Opt. Precision Eng., 2017, 25(2): 312-318.(in Chinese)

    CHU J K, ZHANG H X, WANG Y L, et al.. Design and construction of autonomous real-time position prototype based on multi-polarized skylight[J]. Opt. Precision Eng., 2017, 25(2): 312-318.(in Chinese)

[19] WANG Y L, CHU J K, ZHANG R, et al.. A novel autonomous real-time position method based on polarized light and geomagnetic field[J]. Scientific Reports, 2015, 5(1): 9725.

    WANG Y L, CHU J K, ZHANG R, et al.. A novel autonomous real-time position method based on polarized light and geomagnetic field[J]. Scientific Reports, 2015, 5(1): 9725.

[20] 王玉杰, 胡小平, 练军想, 等. 仿生偏振视觉定位定向机理与实验[J]. 光学 精密工程, 2016, 24(9): 2109-2116.

    王玉杰, 胡小平, 练军想, 等. 仿生偏振视觉定位定向机理与实验[J]. 光学 精密工程, 2016, 24(9): 2109-2116.

    WANG Y J, HU X P, LIAN J X, et al.. Mechanisms of bionic positioning and orientation based on polarization vision and corresponding experiments[J]. Opt. Precision Eng., 2016, 24(9): 2109-2116.(in Chinese)

    WANG Y J, HU X P, LIAN J X, et al.. Mechanisms of bionic positioning and orientation based on polarization vision and corresponding experiments[J]. Opt. Precision Eng., 2016, 24(9): 2109-2116.(in Chinese)

[21] LIU J, YANG J T, WANG Y B, et al.. Global positioning method based on polarized light compass system[J]. Review of Scientific Instruments, 2018, 89(5): 054503.

    LIU J, YANG J T, WANG Y B, et al.. Global positioning method based on polarized light compass system[J]. Review of Scientific Instruments, 2018, 89(5): 054503.

[22] ZHI W, CHU J K, LI J S, et al.. A novel attitude determination system aided by polarization sensor[J]. Sensors, 2018, 18(1): 158.

    ZHI W, CHU J K, LI J S, et al.. A novel attitude determination system aided by polarization sensor[J]. Sensors, 2018, 18(1): 158.

[23] 卢鸿谦, 尹航, 黄显林. 偏振光/地磁/GPS/SINS组合导航方法[J]. 宇航学报, 2007, 28(4): 897-902.

    卢鸿谦, 尹航, 黄显林. 偏振光/地磁/GPS/SINS组合导航方法[J]. 宇航学报, 2007, 28(4): 897-902.

    LU H Q, YIN H, HUANG X L. Polarized-light/geomagnetism/GPS/SINS integrated navigation[J]. Journal of Astronautics, 2007, 28(4): 897-902.(in Chinese)

    LU H Q, YIN H, HUANG X L. Polarized-light/geomagnetism/GPS/SINS integrated navigation[J]. Journal of Astronautics, 2007, 28(4): 897-902.(in Chinese)

[24] 范之国, 高隽, 潘登凯, 等. 利用偏振光、地磁、GPS进行多信息源融合导航方法的研究与实现[J]. 武汉大学学报: 信息科学版, 2009, 34(11): 1324-1327.

    范之国, 高隽, 潘登凯, 等. 利用偏振光、地磁、GPS进行多信息源融合导航方法的研究与实现[J]. 武汉大学学报: 信息科学版, 2009, 34(11): 1324-1327.

    FAN ZH G, GAO J, PAN D K, et al.. The implementation of a new integrated navigation solution with polarized-light assisting with geomagnetism and GPS[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1324-1327.(in Chinese)

    FAN ZH G, GAO J, PAN D K, et al.. The implementation of a new integrated navigation solution with polarized-light assisting with geomagnetism and GPS[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1324-1327.(in Chinese)

[25] GUO X Q, CHU J K, WANG Y L, et al.. Formation experiment with heading angle reference using sky polarization pattern at twilight[J]. Applied Optics, 2019, 58(34): 9331-9337.

    GUO X Q, CHU J K, WANG Y L, et al.. Formation experiment with heading angle reference using sky polarization pattern at twilight[J]. Applied Optics, 2019, 58(34): 9331-9337.

[26] 陈永台, 张然, 林威, 等. 天空实时全偏振成像探测器设计与搭建[J]. 光学 精密工程, 2018, 26(4): 816-824.

    陈永台, 张然, 林威, 等. 天空实时全偏振成像探测器设计与搭建[J]. 光学 精密工程, 2018, 26(4): 816-824.

    CHEN Y T, ZHANG R, LIN W, et al.. Design and construction of real-time all-polarization imaging detector for skylight[J]. Opt. Precision Eng., 2018, 26(4): 816-824.(in Chinese)

    CHEN Y T, ZHANG R, LIN W, et al.. Design and construction of real-time all-polarization imaging detector for skylight[J]. Opt. Precision Eng., 2018, 26(4): 816-824.(in Chinese)

[27] 万振华, 赵开春, 褚金奎. 基于偏振成像的定向传感器误差建模与验证[J]. 光学 精密工程, 2019, 27(8): 1688-1696.

    万振华, 赵开春, 褚金奎. 基于偏振成像的定向传感器误差建模与验证[J]. 光学 精密工程, 2019, 27(8): 1688-1696.

    WAN ZH H, ZHAO K CH, CHU J K. Modeling and analysis of orientation measurement error based on polarization imaging[J]. Opt. Precision Eng., 2019, 27(8): 1688-1696. (in Chinese)

    WAN ZH H, ZHAO K CH, CHU J K. Modeling and analysis of orientation measurement error based on polarization imaging[J]. Opt. Precision Eng., 2019, 27(8): 1688-1696. (in Chinese)

[28] TITTERTON D, JOHN L, WESTON. Strapdown Inertial Navigation Technology [M]. 2nd Edition. London: Institution of Engineering and Technology, 2004.

    TITTERTON D, JOHN L, WESTON. Strapdown Inertial Navigation Technology [M]. 2nd Edition. London: Institution of Engineering and Technology, 2004.

[29] WANG Y L, CHU J K, ZHANG R, et al.. A bio-inspired polarization sensor with high outdoor accuracy and central-symmetry calibration method with integrating sphere[J]. Sensors, 2019, 19(16): 3448.

    WANG Y L, CHU J K, ZHANG R, et al.. A bio-inspired polarization sensor with high outdoor accuracy and central-symmetry calibration method with integrating sphere[J]. Sensors, 2019, 19(16): 3448.

褚金奎, 林木音, 王寅龙, 李金山, 郭晓庆. 偏振光传感器的无人船导航与编队应用[J]. 光学 精密工程, 2020, 28(8): 1661. CHU Jin-kui, LIN Mu-yin, WANG Yin-long, LI Jin-shan, GUO Xiao-qing. Application of polarization sensor to unmanned surface vehicle navigation and formation[J]. Optics and Precision Engineering, 2020, 28(8): 1661.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!