人工晶体学报, 2022, 51 (11): 1983, 网络出版: 2023-01-03   

多孔硅制备研究进展及其在锂离子电池方面的应用

Research Progress of Porous Silicon Preparation and Its Application in Lithium Ion Batteries
许琳琳 1,2,*于海英 1,2张永锋 1,2
作者单位
1 内蒙古工业大学化工学院, 呼和浩特 010051
2 内蒙古自治区煤基固废高效循环利用重点实验室, 呼和浩特 010051
摘要
多孔硅具有比表面积大、发光性能良好等特点, 目前对于多孔硅的研究已经涉及到生物与化学传感器、药物递送、光催化、能源等领域。多孔硅中的孔隙可有效缓解硅在锂化时的体积膨胀, 缩短锂离子从电解液向硅本体扩散的距离, 促进高电流密度下的充放电过程。因此, 多孔硅在储能领域得到了广泛研究与发展。但是一些挑战仍然存在, 如制备成本、刻蚀机理、多孔结构的调控、多孔硅的电化学性能等还不能满足商业化应用的要求。本文对目前国内外多孔硅制备方法的研究进行了综述, 并详细介绍了多孔硅在锂离子电池领域的应用。最后, 对多孔硅材料在储能领域的发展进行了展望。
Abstract
Porous silicon has the characteristics of large specific surface area and good luminescent properties. At present, the research on porous silicon has been involved in the fields of biological and chemical sensors, drug delivery, photocatalysis, energy and so on. The pore of porous silicon can effectively reduce the volume expansion in the process of silicon lithiation, shorten the distance of lithium ion diffusion from electrolyte to silicon, and promote the charge-discharge process at high current density. Therefore, porous silicon has been widely studied and developed in the field of energy storage. However, some challenges still exist, such as preparation cost, etching mechanism, regulation of porous structure, and electrochemical performance of porous silicon, which cannot meet the requirements of commercial application. The current research on the preparation methods of porous silicon at home and abroad is reviewed in this paper, and the application of porous silicon in lithium ion battery is introduced in detail. Finally, the development of porous silicon materials in energy storage field is prospected.
参考文献

[1] 陈丁琼.锂离子电池硅/碳负极材料的研究[D].厦门:厦门大学, 2017.

[2] 王淑娴.多孔硅粉的制备及其作为锂离子电池负极材料的应用[D].杭州:浙江大学, 2019.

[3] CHEN X, LI H X, YAN Z H, et al. Structure design and mechanism analysis of silicon anode for lithium-ion batteries[J]. Science China Materials, 2019, 62(11): 1515-1536.

[4] ASENBAUER J, EISENMANN T, KUENZEL M, et al. The success story of graphite as a lithium-ion anode material-fundamentals, remaining challenges, and recent developments including silicon (oxide) composites[J]. Sustainable Energy & Fuels, 2020, 4(11): 5387-5416.

[5] 王 垒.锂离子电池材料的研究与应用[D].呼和浩特:内蒙古工业大学, 2013.

[6] 安威力.多孔微米硅基负极材料的设计、合成及储锂性能研究[D].武汉:武汉科技大学, 2019.

[7] 唐校福.锂离子电池硅碳负极材料的制备改性及电化学性能研究[D].哈尔滨:哈尔滨工业大学, 2018.

[8] 李世恒, 王 超, 鲁振达.锂离子电池硅基负极材料的预锂化研究进展[J].高等学校化学学报, 2021, 42(5):1530-1542.

[9] WANG L, XI F S, ZHANG Z, et al. Recycling of photovoltaic silicon waste for high-performance porous silicon/silver/carbon/graphite anode[J]. Waste Management, 2021, 132: 56-63.

[10] WANG K, PEI S E, HE Z S, et al. Synthesis of a novel porous silicon microsphere@carbon core-shell composite via in situ MOF coating for lithium ion battery anodes[J]. Chemical Engineering Journal, 2019, 356: 272-281.

[11] GE M Z, CAO C Y, BIESOLD G M, et al. Recent advances in silicon-based electrodes: from fundamental research toward practical applications[J]. Advanced Materials, 2021, 33(16): e2004577.

[12] JIA H P, LI X L, SONG J H, et al. Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes[J]. Nature Communications, 2020, 11(1): 1474.

[13] GE M, FANG X, RONG J, et al. Review of porous silicon preparation and its application for lithium-ion battery anodes[J]. Nanotechnology, 2013, 24(42): 422001.

[14] ENTWISTLE J, RENNIE A, PATWARDHAN S. A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond[J]. Journal of Materials Chemistry A, 2018, 6(38): 18344-18356.

[15] 张淑东.自下而上与自上而下法构筑纳米结构及其物性研究[D].合肥:中国科学技术大学, 2010.

[16] BURHAM N, HAMZAH A A, MAJLIS B Y. Effect of hydrofluoric acid (HF) concentration to pores size diameter of silicon membrane[J]. Bio-Medical Materials and Engineering, 2014, 24(6): 2203-2209.

[17] LIN J C, HOU H T, WANG H K, et al. Edge effect in electrochemical etching on porous silicon and its direct evidence on photoluminescence patterns[J]. Optical Materials Express, 2017, 7(3): 880.

[18] KIM Y Y, LEE J H, KIM H J. Nanoporous silicon flakes as anode active material for lithium-ion batteries[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 85: 223-226.

[19] ZHENG K, ZOU X L, XIE X L, et al. Electrosynthesis of SiC derived porous carbon nanospheres for supercapacitors[J]. Materials Letters, 2018, 216: 265-268.

[20] LI X L, GU M, HU S Y, et al. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes[J]. Nature Communications, 2014, 5: 4105.

[21] KOROTCENKOV G, CHO B K. Silicon porosification: state of the art[J]. Critical Reviews in Solid State and Materials Sciences, 2010, 35(3): 153-260.

[22] SOHN M, KIM D S, PARK H I, et al. Porous silicon-carbon composite materials engineered by simultaneous alkaline etching for high-capacity lithium storage anodes[J]. Electrochimica Acta, 2016, 196: 197-205.

[23] YANG T Y, GAO Y, TANG Y K, et al. Porous silicon from industrial waste engineered for superior stability lithium-ion battery anodes[J]. Journal of Nanoparticle Research, 2021, 23(9): 209.

[24] 习小明, 张 君, 涂飞跃, 等.锂离子电池三维多孔微米硅负极研究进展[J].矿冶工程, 2022, 42(3):129-133.

[25] HUO C L, WANG J, FU H X, et al. Metal-assisted chemical etching of silicon in oxidizing HF solutions: origin, mechanism, development, and black silicon solar cell application[J]. Advanced Functional Materials, 2020, 30(52): 2005744.

[26] SRIVASTAVA R P, KHANG D Y. Structuring of Si into multiple scales by metal-assisted chemical etching[J]. Advanced Materials, 2021, 33(47): e2005932.

[27] BANG B M, LEE J I, KIM H, et al. High-performance macroporous bulk silicon anodes synthesized by template-free chemical etching[J]. Advanced Energy Materials, 2012, 2(7): 878-883.

[28] ZHOU X Y, CHEN S, ZHOU H C, et al. Enhanced lithium ion battery performance of nano/micro-size Si via combination of metal-assisted chemical etching method and ball-milling[J]. Microporous and Mesoporous Materials, 2018, 268: 9-15.

[29] CHEN Y, LIU L F, XIONG J, et al. Lithium ion batteries: porous Si nanowires from cheap metallurgical silicon stabilized by a surface oxide layer for lithium ion batteries[J]. Advanced Functional Materials, 2015, 25(43): 6693.

[30] PARK H, LEE S, YOO S, et al. Control of interfacial layers for high-performance porous Si lithium-ion battery anode[J]. ACS Applied Materials & Interfaces, 2014, 6(18): 16360-16367.

[31] ASOH H, SEKIDO D, HASHIMOTO H. Potential of micrometer-sized graphite as a catalyst for chemical etching of silicon[J]. Materials Science in Semiconductor Processing, 2021, 121: 105327.

[32] FENG J K, ZHANG Z, CI L J, et al. Chemical dealloying synthesis of porous silicon anchored by in situ generated graphene sheets as anode material for lithium-ion batteries[J]. Journal of Power Sources, 2015, 287: 177-183.

[33] 孙 林, 谢 杰, 刘 涛, 等.多孔硅纳米材料的制备及在高能锂电池中的应用[J].无机化学学报, 2020, 36(3):393-405.

[34] HAO Q, HOU J G, YE J J, et al. Hierarchical macroporous Si/Sn composite: easy preparation and optimized performances towards lithium storage[J]. Electrochimica Acta, 2019, 306: 427-436.

[35] TAO Y, ZENG G F, XIAO C Y, et al. Porosity controlled synthesis of nanoporous silicon by chemical dealloying as anode for high energy lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2019, 554: 674-681.

[36] BAO Z H, WEATHERSPOON M R, SHIAN S, et al. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas[J]. Nature, 2007, 446(7132): 172-175.

[37] JIA H P, ZHENG J M, SONG J H, et al. A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries[J]. Nano Energy, 2018, 50: 589-597.

[38] ZHOU X Y, WU L L, YANG J, et al. Synthesis of nano-sized silicon from natural halloysite clay and its high performance as anode for lithium-ion batteries[J]. Journal of Power Sources, 2016, 324: 33-40.

许琳琳, 于海英, 张永锋. 多孔硅制备研究进展及其在锂离子电池方面的应用[J]. 人工晶体学报, 2022, 51(11): 1983. XU Linlin, YU Haiying, ZHANG Yongfeng. Research Progress of Porous Silicon Preparation and Its Application in Lithium Ion Batteries[J]. Journal of Synthetic Crystals, 2022, 51(11): 1983.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!