光子学报, 2022, 51 (8): 0851505, 网络出版: 2022-10-25  

偏振光学成像:器件,技术与应用(特邀) 下载: 1107次

Polarimetric Optical Imaging:Devices,Technologies and Applications(Invited)
作者单位
1 陕西师范大学 物理学与信息技术学院,西安 710119
2 中国科学院西安光学精密机械研究所,西安 710119
3 西安市光信息调控与增强技术重点实验室,西安 710119
4 山东理工大学 物理与光电工程学院,山东 淄博 255000
5 中国人民解放军63861部队,吉林 白城 137001
摘要
偏振是强度、波长和相位之外描述电磁波基本属性的第四个重要的“信息维度”参量,物体反射光或辐射光的偏振特性与其材质、几何形状、纹理结构和表面粗糙度、理化特性等本身性质密切相关。偏振光学成像是基于对光的偏振信息进行探测的新型光学成像手段,其利用目标反射光和背景杂散光的偏振特性差异,以达到改善目标成像质量、提高作用距离、提升探测能力和增强识别概率的目的。作为对强度、光谱和红外成像方式的有效补充手段,偏振光学成像对低信噪比复杂背景环境、强散射环境、低照度环境下的目标探测,具有重要的应用价值。结合作者多年来在偏振光学成像探测方面的研究工作基础,围绕相关的器件、技术和应用发展状况,对偏振光学成像研究领域进行了较为详细的介绍。包括偏振光学成像技术及偏振相机的国内外研究、发展和应用状况,与偏振光学成像密切相关的偏振光Stoke矩阵表示及偏振光学成像基本原理,以及研究团队在偏振相机研制及偏振光学成像探测方面开展的研究工作,主要涉及分孔径偏振光学成像系统的设计及关键器件和技术,偏振图像的信息处理技术及算法和应用。最后,对偏振光学成像研究目前需要解决的技术问题和发展方向给出了思考和建议。
Abstract
Polarization is the fourth important “information dimension” parameter in addition to intensity, wavelength and phase to describe the basic properties of electromagnetic waves. The polarization characteristics of reflected or radiated light are closely related to its material, geometry, structure and surface roughness, and physicochemical properties. Polarimetric optical imaging is a novel optical imaging method based on detecting the polarization information of light, which takes advantages of the difference in polarization characteristics between the reflected light and the background stray light to improve the target imaging quality, increase the action distance, enhance the detection capability and the identification probability. As an effective complementary means to the intensity, spectral and infrared imaging methods, polarimetric optical imaging has important applications for target detection in complex background environments with low signal-to-noise ratio, strong scattering and low illumination environments. Based on the authors' years of research work in polarimetric optical imaging and detection, this paper provides a more detailed introduction to the research status of polarimetric optical imaging including the related devices, technologies and applications. We present a comprehensive analysis and introduction of the polarimetric optical imaging technology and camera, the development and the application status at home and abroad. There are mainly two types of the polarimetric optical imaging regimes, which include the division-of time polarimetric optical imaging system and the simultaneous polarimetric optical imaging system, the later one can be further classified into the division-of-amplitude system, the division-of-aperture system, and the division-of-focal-plane system. The Stoke matrix representation of polarized light closely related to polarimetric imaging and the basic imaging principle are briefly introduced. Some research works conducted by our research team in polarimetric camera development and polarimetric optical imaging detection are summarized in detail, involving the design and key devices as well as technologies of the division-of-aperture polarimetric imaging system, the information processing technologies and algorithms and applications of polarization image. To be more specific, we introduce a novel division-of-aperture chromatic polarimetric camera with full-polarization-state simultaneous detection, i.e., including three linearly polarized states (0°,45°,and 90°) and one right circularly polarized state. We also introduce a division-of-aperture polarimetric lens with full-polarization-state simultaneous detection, which can be easily assembled to a commercial camera to change it into a polarimetric camera. We solve the image registration problem in division-of-aperture polarimetric camera by combining the phase-only correlation algorithm, the Speeded-up Robust Features (SURF) algorithm, and the Random Sample Consensus (RANSAC) algorithm. We propose a novel polarimetric optical imaging regime, namely the division-of-aperture simultaneous system based on the specifically designed color-polarizer filter, which is used for coding both the spectrum and the polarization. We report our research works on the polarimetric dehazing/descattering imaging for fog and/or underwater environments based on the optimization of the Angle of Polarization (AoP), and the low-pass filter denoising. We also introduce image enhancement algorithms for target imaging, detection and/or identification, where the visible and the near-infrared polarimetric images are fused, or the high-resolution polarized images are reconstructed from the low-resolution polarized images, together with obtaining the high-resolution Degree of Polarization (DoP) image and the high-resolution AoP image. We show the physical model of the polarization 3D reconstruction imaging, together with its basic theory, method and the 3D imaging experimental results. We show some thoughts, suggestions and/or problems on the current techniques and development directions that need to be solved in polarimetric optical imaging research, which include the enhancement of the polarization measurement precision, the optimization design of the polarimetric optical imaging system, the advantages development/extension of the computational optical imaging techniques based on polarimetric image processing and optimization, and the applications of polarimetric optical imaging and detection techniques, etc.

任立勇, 梁健, 屈恩世, 张文飞, 杜博军, 马菲雅, 郭少犇, 张进. 偏振光学成像:器件,技术与应用(特邀)[J]. 光子学报, 2022, 51(8): 0851505. Liyong REN, Jian LIANG, Enshi QU, Wenfei ZHANG, Bojun DU, Feiya MA, Shaoben GUO, Jin ZHANG. Polarimetric Optical Imaging:Devices,Technologies and Applications(Invited)[J]. ACTA PHOTONICA SINICA, 2022, 51(8): 0851505.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!