光谱学与光谱分析, 2023, 43 (3): 867, 网络出版: 2023-04-07  

非标方法长期稳定性评价及在辉光放电质谱分析纯镍中痕量元素的应用

Evaluation of Long-Term Stability for Non-Standard Method and Application in Trace Element Analysis of Pure Nickel by Glow Discharge Mass Spectrometry
作者单位
1 钢铁研究总院, 北京 100081
2 钢研纳克检测技术股份有限公司, 北京 100081
摘要
基于检测标准中提供的重复性和时间变化的再现性数据, 通过对其长期稳定性试验中每个时段内测量结果的精密度和正确度, 时段间重复性, 时段间总精密度度, 总平均值的正确度进行检验, 可对分析仪器按照该检测标准进检测的长期稳定性进行系统评价, 其本质是监控分析结果的精密度和正确度。 然而, 实验室大量没有上升为检测标准的检测方法, 即所谓的非标方法, 因缺乏重复性及室内再现性数据, 无法按照上述方法直接进行长期稳定性评价, 但通过实验设计, 在不同时间段对仪器分别进行校正后测量, 可获得非标方法的模拟重复性限和模拟室内再现性限数据。 基于模拟重复性限及模拟室内再现性限数据, 可对非标分析仪器方法长期稳定性进行准确评价。 以辉光放电质谱(GD-MS)测定纯镍中18种杂质元素的非标方法为例, 设计一组对比实验, 获得非标方法的模拟重复性限及模拟室内再现性限数据, 利用卡方统计检验, 获得了辉光放电质谱仪测定纯镍样品中B, Mg, Al, Si等18种杂质元素的准确的长期稳定性时间, 结果表明在相同的测定条件下, 不同元素的长期稳定性不完全相同, 大部分元素可稳定持续测量3 h, P, As, V, Sb和Pb等5个元素的长期稳定性时间上限可达6 h甚至12 h。 在长期稳定性时间上限内, 仪器无需再次进行相对灵敏度因子的测量和校正即可得到准确的测定结果。 这一评价结果与实验室实际经验基本一致, 表明该实验所提出的系统测量和表征方法能客观反映辉光放电质谱仪的长期稳定性。 该方法同样适用于其他非标方法的长期稳定性评价, 对实验室大量的非标方法的质量控制具有指导意义。
Abstract
Based on the repeatability and intermediate precision of time differences in the standard, through inspection of the data of repeatability and trueness of measurements within the time intervals, repeatability between time intervals, general precision between time intervals and trueness of grand mean of long-term stability test. The long-term stability of analytical instruments can be systematically evaluated according to the standard, the essence of which is to monitor the precision and accuracy of analysis results. However, a large number of test methods in the laboratory that have not been upgraded to standards, the so-called non-standard methods, cannot be directly evaluated for long-term stability according to the above methods due to the lack of repeatability and laboratory reproducibility data. Fortunately, the stimulated repeatability and within-laboratory reproducibility limits were obtained for non-standard test methods after correcting the instrument between different time intervals. Based on the stimulated repeatability limit and within-laboratory reproducibility limit, the long-term stability of the corresponding analytical instrument method can be evaluated. This paper uses the non-standard method for determining 18 impurity elements in pure nickel by glow discharge mass spectrometry (GD-MS) as an example. A set of comparative experiments are designed to obtain the simulation reproducibility limit and simulation reproducibility limit data. The long-term stability time for 18 impurity elements, such as B, Mg, Al and Si in pure nickel samples was evaluated by χ2 statistics after being tested by GD-MS. The results showed that the long-term stability was different for different elements when determined under the same condition. The results met the statistical requirements for most elements within 3 hours. Among these, the long-term stability interval can be up to 6 hours or even 12 hours for elements P, As, V, Sb and Pb. The reliable results can be obtained within that time interval without instrument correction. The evaluation results are consistent with the laboratory experience, indicating that the systematic measurement and characterization method proposed in this experiment objectively reflects the long-term stability of the GD-MS objectively. This method can also be used to evaluate the long-term stability of other non-standard methods, which has significant practical guidance for the quality control for the laboratory.
参考文献

[1] JIA Yun-hai, SUN Xiao-fei, YUAN Liang-jing(贾云海, 孙晓飞, 袁良经). Metallurgical Analysis(冶金分析), 2019, 39(1): 1.

[2] ISO 5725-2: 2019, Accuracy (Trueness and Precision) of Measurement Methods and Results-Part 2: Basic Method for the Determination of Repeatability and Reproducibility of a Standard Measurement Method. International Standard.

[3] ISO 5725-3: 1994, Accuracy (Trueness and Precision) of Measurement Methods and Results-Part 3: Intermediate Measures of the Precision of a Standard Measurement Method. International Standard.

[4] ASTM F1593-2008(2016), Standard Test Method for Trace Metallic Impurities in Electronic Grade Aluminum by High Mass-Resolution Glow-Discharge Mass Spectrometer. ASTM International.

[5] Hu F F, Wang C H, Li J D, et al. At. Spectrosc., 2021, 42(1): 25.

[6] Patricia Grinberg, Bradley A J Methven, Katarzyna Swider, et al. ACS Omega, 2021, b(35): 22717.

[7] Yang Weifeng, Zhuo Shangjun, Zhu Zhenli, et al. J. Anal. At. Spectrom., 2021, 36: 932.

[8] Gagan Paudel, Marisa Di Sabatino. J. Anal. At. Spectrom., 2020, 35: 2748.

[9] Lara Lobo, Beatriz Fernández, Marta Aranaz, et al. Spectrochimica Acta Part B, 2020, 168: 105865.

[10] Paudel G, Kasik M, Di Sabatino M. J. Anal. At. Spectrom., 2019, 34: 1829.

[11] Cristina Gonzalez-Gago, Petr Smid, Thomas Hofmann, et al. J. Anal. At. Spectrom., 2019, 34: 1109.

[12] Wei Xinjian, Qin Zhen, Xiong Penghui, et al. Spectrochimica Acta Part B, 2019, 154: 43.

[13] WANG Zi-ren, WANG Chang-hua, HU Fang-fei, et al(王梓任, 王长华, 胡芳菲, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2019, 39(4): 1256.

[14] Anna Gubala, Alexander Ganeeva, Victoria Bodnara, et al. Vacuum, 2018, 153: 248.

[15] Kentaro Yamada, Michihisa Uemoto. Analytical Sciences, 2018, 34: 743.

[16] Fu Liang, Ma Juncai, Shi Shuyun. J. Cent. South Univ., 2018, 25: 1590.

[17] ZHANG Jian-ying, LI Xin-ni, ZHOU Tao, et al(张见营, 李昕霓, 周 涛, 等). Chin. J. Anal. Chem.(分析化学), 2018, 46(5): 757.

[18] Juris Meija, Brad Methven, Ralph E Sturgeon. Metrologia, 2017, 54: 796.

[19] Wei Juan, Dong Jiangli, Zhuo Shangjun, et al. Anal. Chem., 2017, 89, 1382.

[20] Zhang Jianying, Zhou Tao, Tang Yichuan, et al. J. Anal. At. Spectrom., 2016, 31: 2182.

[21] WEI Xing-jian, WANG Li-ping, QIN Zhen, et al(魏兴俭, 王丽萍, 秦 震, 等). J. Chin. Mass Spectrom. Soc.(质谱学报), 2016, 37(4): 343.

[22] LIU Hong-wei, FU Liang, SUN Ai-ming, et al(刘宏伟, 符 靓, 孙爱明, 等). Chin. J. Anal. Chem.(分析化学), 2015, 43(9): 1366.

[23] Marisa Di Sabatino, Anne L. Dons, Joachim Hinrichs, et al. Spectrochimica Acta Part B, 2011, 66: 144.

[24] QIAN Rong, ZHUO Shang-jun, DONG Jiang-li, et al(钱 荣, 卓尚军, 董疆丽, 等). Theory and Application of Glow Discharge Mass Spectrometry(辉光放电质谱理论与应用). Shanghai: Shanghai Science and Technology Press(上海: 上海科学技术出版社), 2017.

[25] Jurgen H Gross. Mass Spectrometry (2nd Edition)(质谱, 第2版). Beijing: Science Press(北京: 科学出版社), 2014. 1, 694.

杨国武, 侯艳霞, 孙晓飞, 贾云海, 李小佳. 非标方法长期稳定性评价及在辉光放电质谱分析纯镍中痕量元素的应用[J]. 光谱学与光谱分析, 2023, 43(3): 867. YANG Guo-wu, HOU Yan-xia, SUN Xiao-fei, JIA Yun-hai, LI Xiao-jia. Evaluation of Long-Term Stability for Non-Standard Method and Application in Trace Element Analysis of Pure Nickel by Glow Discharge Mass Spectrometry[J]. Spectroscopy and Spectral Analysis, 2023, 43(3): 867.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!