激光与光电子学进展, 2023, 60 (11): 1106025, 网络出版: 2023-06-07  

螯合剂修饰拉锥光纤传感器对铅离子浓度的检测研究特邀研究论文

Study on Determination of Lead Ion Concentration by Chelating Agent Modified Tapered Fiber Optic Sensor
作者单位
南昌航空大学无损检测技术教育部重点实验室,江西 南昌 330063
引用该论文

陈倩, 吴强, 刘彬, 刘娟, 胡莹莹, 何兴道. 螯合剂修饰拉锥光纤传感器对铅离子浓度的检测研究[J]. 激光与光电子学进展, 2023, 60(11): 1106025.

Qian Chen, Qiang Wu, Bin Liu, Juan Liu, Yingying Hu, Xingdao He. Study on Determination of Lead Ion Concentration by Chelating Agent Modified Tapered Fiber Optic Sensor[J]. Laser & Optoelectronics Progress, 2023, 60(11): 1106025.

参考文献

[1] ChenJ P, WangL K, WangM H S, et al. Remediation of heavy metals in the environment[M]. Boston: CRC Press, 2016.

[2] Ansari M I, Malik A. Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater[J]. Bioresource Technology, 2007, 98(16): 3149-3153.

[3] NordbergG F, FowlerB A, NordbergM, et al. Handbook on the toxicology of metals[M]. New York: Elsevier/North-Holland Biomedical Press, 1979.

[4] Calderón J, Navarro M E, Jimenez-Capdeville M E, et al. Exposure to arsenic and lead and neuropsychological development in Mexican children[J]. Environmental Research, 2001, 85(2): 69-76.

[5] Ravikumar R, Chen L H, Hui M M X, et al. Ion-imprinted chitosan-based interferometric sensor for selective detection of heavy metal ions[J]. Journal of Lightwave Technology, 2019, 37(11): 2778-2783.

[6] WHO. World Health Organization, Guidelines for drinking-water quality[EB/OL]. [2023-01-02]. http://whqlibdoc.who.int/publications/2011/9789241548151eng.pdf.

[7] Jarzynska G, Falandysz J. The determination of mercury in mushrooms by CV-AAS and ICP-AES techniques[J]. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2011, 46(6): 569-573.

[8] Pehlivan E, Cetin S. Sorption of Cr(VI) ions on two Lewatit-anion exchange resins and their quantitative determination using UV-visible spectrophotometer[J]. Journal of Hazardous Materials, 2009, 163(1): 448-453.

[9] Chen X P, Han C, Cheng H Y, et al. Rapid speciation analysis of mercury in seawater and marine fish by cation exchange chromatography hyphenated with inductively coupled plasma mass spectrometry[J]. Journal of Chromatography A, 2013, 1314: 86-93.

[10] Kumar B N, Kanchi S, Sabela M I, et al. Spectrophotometric determination of nickel (II) in waters and soils: novel chelating agents and their biological applications supported by DFT method[J]. Karbala International Journal of Modern Science, 2016, 2(4): 239-250.

[11] Gao Y, Shi Z M, Zong Q X, et al. Direct determination of mercury in cosmetic samples by isotope dilution inductively coupled plasma mass spectrometry after dissolution with formic acid[J]. Analytica Chimica Acta, 2014, 812: 6-11.

[12] 刘雯, 韩玲, 刘明, 等. 基于GF-5高光谱波段选择的矿区周边土壤Cd含量反演[J/OL]. 激光与光电子学进展: 1-13[2023-04-24]. http://kns.cnki.net/kcms/detail/31.1690.tn.20221031.1552.062.html.

    LiuW, HanL, LiuM, et al. Inversion of soil Cd content based on GF-5 hyperspectral band selection[J/OL]. Laser and Optoelectronics Progress: 1-13[2023-02-24]. http://kns.cnki.net/kcms/detail/31.1690.tn.20221031.1552.062.html.

[13] Long F, Gao C, Shi H C, et al. Reusable evanescent wave DNA biosensor for rapid, highly sensitive, and selective detection of mercury ions[J]. Biosensors and Bioelectronics, 2011, 26(10): 4018-4023.

[14] Wang X D, Wolfbeis O S. Fiber-optic chemical sensors and biosensors (2013-2015)[J]. Analytical Chemistry, 2016, 88(1): 203-227.

[15] Dey S, Santra S, Midya A, et al. Synthesis of CuxNi(1-x)O coral-like nanostructures and their application in the design of a reusable toxic heavy metal ion sensor based on an adsorption-mediated electrochemical technique[J]. Environmental Science: Nano, 2017, 4(1): 191-202.

[16] Shin J, Hong Y, Wu M L, et al. A wide detection range mercury ion sensor using Si MOSFET having single-walled carbon nanotubes as a sensing layer[J]. IEEE Electron Device Letters, 2017, 38(7): 959-962.

[17] Yoon S, Miller E, He Q W, et al. A bright and specific fluorescent sensor for mercury in water, cells, and tissue[J]. Angewandte Chemie International Edition, 2007, 46(35): 6658-6661.

[18] 朱鑫琦, 张佩, 谢胜, 等. 地下水重金属原位荧光检测装置的研究[J/OL]. 激光与光电子学进展: 1-12[2023-04-24]. http://kns.cnki.net/kcms/detail/31.1690.TN.20230104.1300.026.html.

    ZhuX Q, ZhangP, XieS, et al. Study on in situ fluorescence detection of heavy metals in groundwater[J/OL]. Laser & Optoelectronics Progress: 1-12[2023-02-24]. http://kns.cnki.net/kcms/detail/31.1690.TN.20230104.1300.026.html.

[19] Chen L, Leng Y K, Liu B, et al. Ultrahigh-sensitivity label-free optical fiber biosensor based on a tapered singlemode- no core-singlemode coupler for Staphylococcus aureus detection[J]. Sensors and Actuators B Chemical, 2020, 320: 128283.

[20] 汪颖, 甘婷婷, 赵南京, 等. 蛋白核小球藻富集结合XRF光谱测量的水体重金属铬快速检测方法[J]. 光学学报, 2022, 42(24): 2430004.

    Wang Y, Gan T T, Zhao N J, et al. Rapid detection method of heavy metal chromium in water by enrichment of chlorella pyrenoidosa and XRF spectrometry[J]. Acta Optica Sinica, 2022, 42(24): 2430004.

[21] Chen L, Leng Y K, Qiu S, et al. Ultrahigh-sensitivity label-free singlemode- tapered no core-singlemode fiber immunosensor for Listeria monocytogenes detection[J]. Sensors and Actuators B: Chemical, 2023, 376: 132930.

[22] Wu Q, Qu Y W, Liu J, et al. Singlemode-multimode-singlemode fiber structures for sensing applications: a review[J]. IEEE Sensors Journal, 2021, 21(11): 12734-12751.

[23] Han D, Lim S Y, Kim B J, et al. Mercury(ii) detection by SERS based on a single gold microshell[J]. Chemical Communications, 2010, 46(30): 5587-5589.

[24] Raghunandhan R, Chen L H, Long H Y, et al. Chitosan/PAA based fiber-optic interferometric sensor for heavy metal ions detection[J]. Sensors and Actuators B: Chemical, 2016, 233: 31-38.

[25] Ji W B, Yap S H K, Panwar N, et al. Detection of low-concentration heavy metal ions using optical microfiber sensor[J]. Sensors and Actuators B: Chemical, 2016, 237: 142-149.

[26] Yap S H K, Chien Y H, Tan R, et al. An advanced hand-held microfiber-based sensor for ultrasensitive lead ion detection[J]. ACS Sensors, 2018, 3(12): 2506-2512.

[27] Ma Y, Zheng W L, Zhang Y N, et al. Optical fiber SPR sensor with surface ion imprinting for highly sensitive and highly selective Ni2+ detection[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 7006006.

[28] Lee J H, Kim B S, Lee J C, et al. Removal of Cu++ ions from aqueous Cu-EDTA solution using ZnO nanopowder[J]. Materials Science Forum, 2005, 486/487: 510-513.

[29] Repo E, Warchoł J K, Bhatnagar A, et al. Heavy metals adsorption by novel EDTA-modified chitosan–silica hybrid materials[J]. Journal of Colloid and Interface Science, 2011, 358(1): 261-267.

[30] Jal P K, Patel S, Mishra B K. Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions[J]. Talanta, 2004, 62(5): 1005-1028.

[31] Gu B B, Yin M J, Zhang A P, et al. Fiber-optic metal ion sensor based on thin-core fiber modal interferometer with nanocoating self-assembled via hydrogen bonding[J]. Sensors and Actuators B: Chemical, 2011, 160(1): 1174-1179.

陈倩, 吴强, 刘彬, 刘娟, 胡莹莹, 何兴道. 螯合剂修饰拉锥光纤传感器对铅离子浓度的检测研究[J]. 激光与光电子学进展, 2023, 60(11): 1106025. Qian Chen, Qiang Wu, Bin Liu, Juan Liu, Yingying Hu, Xingdao He. Study on Determination of Lead Ion Concentration by Chelating Agent Modified Tapered Fiber Optic Sensor[J]. Laser & Optoelectronics Progress, 2023, 60(11): 1106025.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!