中国激光, 2024, 51 (5): 0513002, 网络出版: 2024-03-19  

锥形光纤SERS探针的批量制备和定量检测

Batch Preparation and Quantitative Detection of Tapered SERS Fiber Probes
作者单位
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所安徽省光子器件与材料重点实验室,安徽 合肥 230031
2 中国科学技术大学,安徽 合肥 230026
3 安徽大学物质科学与信息技术研究院,安徽 合肥 230039
摘要
研究了批量制备的锥形光纤表面增强拉曼散射(SERS)探针的定量检测性能。在统一的制备条件下,基于静电吸附自组装方法批量制备的同一批次锥形光纤探针具有良好的互换性。基于相同检测条件,在同一福美双样品浓度下测得SERS光谱幅度的相对标准偏差(RSD)可达8%以下。不同批次的光纤探针存在互换性退化问题,难以满足实际定量检测应用对光纤探针数目的要求。为了解决该问题,提出并演示了一种将不同批次光纤探针的光谱数据同化至同批次光纤探针测量结果的同化方法。通过对同化后的大样本光谱数据进行统计平均和数据拟合,获得了福美双样品在2×10-8~10-6 mol/L浓度范围内的SERS定量关系曲线,福美双加标样品的测试回收率可达90%~110%。该研究结果对于实际SERS定量检测具有参考意义。
Abstract
Objective

Surface-enhanced Raman scattering (SERS) spectroscopy has significant applications in various fields such as food safety, environmental monitoring, and life sciences. In recent years, there has been growing interest in the quantitative detection of substance concentrations using SERS spectroscopy. SERS fiber probes, which offer outstanding practical value, enable in situ and on-site detection of substances in complex environments, making them highly suitable for practical quantitative measurements. However, because the reuse of fiber probes is challenging owing to contamination by the substances being measured, it is essential to prepare a large number of fiber probes that exhibit good interchangeability in batches. This allows the establishment of a statistical quantitative relationship between the spectral amplitude and substance concentration through large-sample spectral detection. This statistical quantitative relationship can thereafter be used to determine the concentrations of unknown samples. However, the interchangeability differences of fiber probes prepared from similar and different batches and the elimination or compensation for interchangeability degradation during batch preparation for quantitative detection have not yet been studied. In this study, we employ an electrostatic adsorption self-assembly method to prepare tapered SERS fiber probes. By assimilating, statistically averaging, and fitting large-sample spectral data measured from different batches of fiber probes, we obtain high-precision quantitative curves and achieve quantitative detection of thiram samples.

Methods

A batch of bare tapered fibers is fixed onto a specially designed disc. Subsequently, a monolayer of uniformly distributed gold nanospheres is grown on the surface of these fibers at the same density under the optimized electrostatic adsorption self-assembly conditions. Subsequently, a batch of tapered SERS fiber probes with excellent interchangeability is obtained. Tapered SERS fiber probes are prepared by repeating the same preparation process under identical conditions. During the testing stage, fiber probes from the same batch, which exhibit good interchangeability, are initially used to individually test a series of thiram standard solutions with varying concentrations. The spectral data obtained from these single tests are thereafter fitted to establish a quantitative relationship between the spectral amplitude and the sample concentration for that particular batch. Subsequently, spectral data obtained from single tests using different batch probes are fitted to obtain a quantitative relationship for each batch. Based on these relationships, spectral calibration factors are calculated to account for variations across different batches. Ultimately, the spectral data measured by the probes from different batches are assimilated into a single batch using calibration factors such that large-sample spectral data can be collected. Spectral data are statistically averaged and fitted to obtain a high-precision quantitative curve. The quantitative detection capability of this curve is assessed using recovery testing experiments.

Results and Discussions

The results reveal that fiber probes from the same batch exhibit good interchangeability, with the relative standard deviation (RSD) of the spectral amplitude measured for the same sample concentration being less than 8%. Fiber probes from different batches exhibit greater variability owing to inherent factors in the chemical growth process, with an RSD of 15% for the spectral amplitude measured for the same sample concentration (Fig.3). The quantitative relationship between the spectral amplitude measured by probes from the same batch and concentration is investigated, and the results indicate that for all batches of fiber probes measured, the spectral amplitudes measured by probes from a single batch follow a Langmuir function relationship with thiram concentration, but the quantitative relationships obtained are different for each batch (Fig.4). Using the spectral calibration factors obtained from the quantitative curves of single tests from each batch, ten batches of spectral data are successfully assimilated to the same batch level, and a high-precision quantitative relationship curve is obtained through statistical averaging and data fitting of the assimilated large-sample spectral data with a fitting degree of up to 0.999 (Fig.5). The quantitative curves obtained after assimilating the spectral data to the 1st, 4th, and 8th batches individually exhibit excellent quantitative detection capabilities, and the recovery rates for thiram-spiked samples at concentrations of 8×10-7 mol/L and 8×10-8 mol/L fall within the range of 90%?110% (Table 2).

Conclusions

In this study, we investigate the quantitative SERS detection performance of tapered fiber probes prepared in batches using an electrostatic adsorption self-assembly method. Under consistent preparation and detection conditions, different fiber probes from the same batch exhibit excellent interchangeability, with an RSD of the SERS spectral amplitude of less than 8% for thiram samples at the same concentration. To address the issue of the reduced interchangeability of fiber probes from different batches, which does not meet the demands for the number of probes needed in practical quantitative detection applications, we propose and demonstrate a method to assimilate the spectral data measured by probes from different batches to those of probes from a single batch. By statistically averaging and fitting the assimilated large-sample spectral data, we obtain a calibration curve for the SERS quantitative detection of thiram samples in the concentration range of 2×10-8?10-6 mol/L. Using this calibration curve, the recovery rates for tests on spiked thiram samples at concentrations of 8×10-7 mol/L and 8×10-8 mol/L reach 90%?110%. The proposed method for the batch preparation of tapered SERS fiber probes, the assimilation method of spectral data from probes prepared in different batches, and the scheme for obtaining high-precision quantitative detection curves through statistical averaging of large-sample spectral data are expected to provide references for practical SERS quantitative detection applications.

1 引言

表面增强拉曼散射(SERS)光谱检测技术在食品安全、环境监测及生命科学等领域中有着重要应用1-5。随着检测灵敏度的提高,利用SERS光谱技术实现物质浓度的定量检测逐渐成为研究热点。在SERS检测中,待测物质分子须吸附在SERS基底表面,这会污染SERS基底,使得其难以重复使用。因此,SERS定量检测需要大量可互换的SERS基底。但是,对于“热点”随机分布的高灵敏SERS基底,不同基底测得的光谱强度存在差异,即SERS基底的互换性差,导致基于这类SERS基底的定量检测的准确性难以保证6。尽管借助内标法可在一定程度上提高定量检测的准确性,但内标物须具有化学性质稳定及SERS光谱特征峰与待测物不重叠等特性,故内标法难以推广应用7。为此,人们改用刻蚀法8、纳米压印9和模板法10-11等微纳加工方法来制备结构规整有序的SERS基底,以提高SERS基底的互换性。目前,基于微纳加工制备的SERS基底,在同一样品浓度下测得SERS光谱强度的相对标准偏差(RSD)已达2%以下12,SERS定量检测的准确度高。但是,微纳加工方法难以高效经济地制备大量可互换的SERS基底,不利于SERS定量检测的实际应用。

光纤SERS探针优点突出,通过与便携式拉曼光谱仪联用,可实现复杂环境中物质的原位现场检测13。随着光纤SERS探针检测灵敏度的不断提升14-15,人们开始关注光纤SERS探针定量检测的可能性。但与SERS基底一样,表面“热点”随机分布的光纤SERS探针也存在互换性差的问题,影响SERS定量检测的准确性。因此,研究人员选用结构相对简单的平端面光纤探针,采用多种自组装方法,在其平端面上制备出相对均匀的纳米结构,以提高光纤SERS探针的互换性16-18。近年来,人们采用静电吸附等自组装方法,在弯曲光纤表面制备出具有不同形貌和尺度的纳米颗粒,如锥形光纤SERS探针。通过优化锥角,实现了光纤锥表面金属纳米颗粒的表面波激发,既避免了金属纳米颗粒的光热损伤,又增大了SERS相互作用的面积,锥形光纤SERS探针展现出大幅提升检测灵敏度的潜力19-21。因此人们开始考察锥形光纤SERS探针的定量检测问题22。目前,基于静电吸附自组装方法制备的不同光纤探针,测得SERS光谱强度的RSD可达10%以下23,表明这种锥形光纤SERS探针具有较好的互换性。但是,在实际SERS定量检测应用中,必须制备出大量的具有良好互换性的光纤探针:一是因为光纤探针在检测过程中存在污染而不能重复使用;二是需要通过大样本光谱检测来获取光谱幅度与待测物质浓度之间的统计定量关系。但是,批量制备的锥形光纤探针的互换性、不同批次光纤探针之间的互换性差异,以及定量检测时消除或补偿这类批量制备带来的互换性退化等问题,尚需进一步深入研究。

本文研究了静电吸附自组装法批量制备的锥形光纤探针的SERS定量检测性能。在相同制备条件下,同一批次制备的锥形光纤SERS探针具有良好的互换性,而对于不同批次制备的光纤探针,由于化学制备过程中的固有影响因素,互换性降低。提出了一种光谱数据同化方法,将10批次光纤探针测得的福美双样品的SERS光谱幅度同化至同批次光纤探针测得的光谱幅度。对同化后所得到的大样本光谱数据进行统计平均和Langmuir函数拟合,获得了福美双样品的光谱幅度与浓度之间的定量关系曲线,实现了对未知浓度福美双样品的定量检测。

2 光纤探针的制备与测试

用于制备锥形光纤SERS探针的光纤为普通多模石英光纤,纤芯直径为200 µm,数值孔径(NA)为0.22。光纤探针制备分为制备裸光纤锥和在其表面生长金属纳米颗粒两步。为了批量制备可互换的多根锥形光纤SERS探针,我们将长度约为17 cm的10根光纤固定安装在图1(a)所示的圆盘通孔内,并开展腐蚀拉锥和金属纳米颗粒生长实验,以保证同批次光纤SERS探针的制备条件和制备环境一致。将光纤插入到氢氟酸溶液中腐蚀,同时利用提拉机构向上提拉以制备裸光纤锥19,通过控制提拉速度,可批量制备出具有特定锥角的裸光纤锥。氢氟酸溶液的质量分数为40%,其表面覆盖了一层厚度为0.5 cm的甲基硅油,在防止氢氟酸挥发的同时,保证了光纤锥在拉制过程中的腐蚀状态的稳定性。制备出的同批次裸光纤锥被依次置于纯水和乙醇中,经超声清洗后被放到真空干燥箱中保存。为保证裸光纤锥的制备条件相同,每批光纤垂直浸入氢氟酸溶液的深度均为0.5 cm,且每次拉制时所用的氢氟酸溶液为新配,体积均为10 mL。

图 1. 锥形光纤SERS探针的批量制备装置和效果图。(a)带圆通孔的圆盘示意图,其中圆盘直径和厚度分别为10.0 mm和3.0 mm,圆通孔直径和间距分别为400.0 μm和2.5 mm;(b)2 h静电吸附后制备出的光纤SERS探针锥表面的金球颗粒分布情况,插图为虚线框区域的局部放大图

Fig. 1. Batch preparation device and effect diagram of tapered fiber SERS probes. (a) Schematic of disc with circular through holes, in which diameter and thickness of disk are 10.0 mm and 3.0 mm, and diameter and spacing of circular through holes are 400.0 μm and 2.5 mm respectively; (b) distribution of golden sphere particles on tapered surface of prepared fiber SERS probe after 2 h electrostatic adsorption with local enlarged picture of dotted box area shown in inset

下载图片 查看所有图片

然后,采用静电吸附自组装法,在固定在圆盘上的裸光纤锥表面上,均匀地单层生长球形金纳米颗粒。为充分利用颗粒的局域表面等离子体激元共振(LSPR)效应且便于在光纤锥表面上实现颗粒的均匀单层生长,我们选择直径为70 nm的球形金纳米颗粒制备光纤探针19。采用食人鱼溶液(质量分数为30%的过氧化氢与质量分数为98%的浓硫酸的体积比为3∶7)浸泡光纤锥1 h,使每根光纤表面的SiO2分子羟基化;将其置于羧基乙基硅烷三醇钠盐(CEOS)溶液(体积分数为20 µL/mL)中浸泡2 h,通过羟基之间的缩合反应,在光纤锥表面上实现了带负电的羧基基团的均匀分布;将表面带有均匀羧基基团的光纤锥置于由十六烷基三甲基氯化铵(CTAC)包覆且带正电的金球溶胶中,由于静电吸附,金球颗粒自组装至光纤锥表面,构成单层均匀分布的锥形光纤SERS探针。制备每批次光纤探针时金球溶胶的配置方法相同,且光纤探针浸入CEOS溶液和金球溶胶的深度均由升降平台精密控制为3 mm。通过改变静电吸附的时长,可批量制备出具有不同金球分布密度的锥形光纤探针,但在光纤锥表面金球颗粒的分布密度一致19。2 h静电吸附后制备出的光纤SERS探针锥表面的金球颗粒分布情况如图1(b)所示,可以看出,金球颗粒在光纤探针锥表面上呈现出良好的单层均匀分布。

锥形光纤SERS探针的定量检测性能采用便携式拉曼光谱仪测试,实验装置如图2所示。先将光谱仪光纤探头准直耦合到一段长为1 m左右的过渡多模光纤中,再对过渡光纤与待测锥形光纤SERS探针进行低损耗熔接,从而实现测试过程中不同光纤SERS探针的激发光功率校准。采用过渡光纤的另一优点是,当多次熔接待测光纤探针时,光纤链路长度会缩短,影响拉曼光谱背景,而通过更换过渡光纤就可方便地消除该影响。待测样品为福美双标准溶液,通过在浓度为10-4 mol/L的福美双乙醇母液中添加纯水逐级稀释依次得到。实验中待测样品不重复使用,以避免样品污染和浓度变化引入测试误差。在有/无样品分子的条件下,将所测光谱直接相减可获得光纤探针的SERS光谱,而无样品分子时的光谱为光谱仪探头尾纤、过渡光纤与待测锥形光纤探针的光谱背景,可将待测锥形光纤探针置于纯水中检测获取。实际操作时,将光纤探针浸入到纯水中,先测量出所用激发光功率下的背景光谱,取出晾干后浸入到样品溶液中,测量出对应激发光功率下的SERS光谱,实现对SERS光谱的背景校正。为保证相同条件下每次检测收集到的光谱稳定一致,每批次制备好的光纤探针均被存放到真空干燥箱中,并在制备后2 h内完成测试,测试时光纤探针浸入纯水和样品溶液的深度保持相同。

图 2. 锥形光纤探针的SERS测试实验装置

Fig. 2. Experimental setup of SERS test for tapered fiber probes

下载图片 查看所有图片

3 结果与讨论

在实验中,根据前期研究结果19,选定2 h静电吸附时间下制备的13°锥形光纤探针来研究SERS定量检测效果。该13°锥形光纤SERS探针可避免过大的光传输损耗和外部分子散射损耗,同时也不易在锥底部产生光折射而造成光热损伤,有利于实现整个锥面上SERS效应的高效率激发,测得的光谱幅度高,光谱稳定性好。为避免较大激发光功率引起的光谱幅度波动对后续光谱定量检测的干扰,选定激发光功率为18 mW。在本文后续部分,若无特殊说明,所用光纤SERS探针的锥角为13°,纳米颗粒吸附时间为2 h,激发光功率为18 mW。

采用不同批次制备的光纤探针(每批次10根),分别实测了10-6 mol/L福美双标准溶液的SERS光谱及其RSD。图3(a)为测得的同一批次10根光纤探针的典型SERS光谱。可见,10根光纤探针均能清晰分辨出福美双分子的拉曼特征峰24,光谱基线较平坦,各拉曼特征峰的幅度基本一致,1386 cm-1拉曼特征峰的光谱幅度均在12000左右,采用同一批次的不同光纤探针测得的该1386 cm-1拉曼特征峰光谱幅度的RSD为6.8%。图3(b)、(c)分别为6 个不同批次制备的光纤探针测得的平均SERS光谱和1386 cm-1拉曼特征峰光谱幅度的标准偏差(SD)。可见,尽管同一批次制备的10根光纤探针所测的光谱幅度的波动均较小,其1386 cm-1拉曼特征峰幅度的RSD分别为6.8%、8.0%、7.5%、4.5%、5.8%和8.2%,但6个不同批次制备的光纤探针所测的平均光谱的1386 cm-1拉曼特征峰幅度的差异较大,RSD高达15%。

图 3. 锥形光纤SERS探针的检测效果。(a)同一批次10根锥形光纤探针测得的10-6 mol/L福美双标准溶液的SERS光谱;(b)6个不同批次探针测得的10-6 mol/L福美双标准溶液的平均SERS光谱;(c)6个不同批次探针测得的SERS平均光谱中的1386 cm-1拉曼峰光谱幅度及其标准差

Fig. 3. Detection results of tapered fiber SERS probes. (a) SERS spectra of 10-6 mol/L thiram standard solution measured by 10 tapered fiber probes in same batch; (b) average SERS spectra of 10-6 mol/L thiram standard solutions measured by 6 different batches of probes; (c) spectral amplitudes of Raman peaks at 1386 cm-1 and corresponding SDs in SERS average spectra measured by 6 different batches of probes

下载图片 查看所有图片

表 1. 光谱数据同化前后加标样品的检出浓度

Table 1. Detected concentrations of spiked samples before and after spectral data assimilation

Concentration

of spiked

sample

C1'C2'C3'C4'C5'C6'C7'C8'C9'C10'C'
8.00×10-77.51×10-76.10×10-77.06×10-78.42×10-76.53×10-75.65×10-78.16×10-79.46×10-78.07×10-75.92×10-77.31×10-7
8.00×10-89.28×10-87.58×10-81.14×10-77.35×10-88.34×10-88.66×10-87.01×10-87.84×10-88.68×10-89.06×10-88.49×10-8

查看所有表

表 2. 光谱数据同化前后的测试回收率

Table 2. Detected recovery rates before and after spectral data assimilation

Concentration of

spiked sample /(mol·L-1

R1 /%R2 /%R3 /%R4 /%R5 /%R6 /%R7 /%R8 /%R9 /%R10 /%R /%
8.00×10-793.976.388.3105.381.670.6102.0118.3100.974.091.4
8.00×10-8116.094.8142.591.9104.3108.387.698.0108.5113.3106.1

查看所有表

当福美双溶液浓度分别为10-7 mol/L和5×10-8 mol/L时,任一批次的10根光纤探针测得的光谱与图3所示的结果基本相似,即同一批次的光纤探针所测的光谱幅度的波动均较小,而不同批次的光纤探针所测的SERS光谱中的1386 cm-1拉曼特征峰幅度的RSD较大。这种同一批次光纤探针所测得的SERS光谱的幅度基本相同的原因在于:1)采用圆盘固定光纤,可使裸光纤锥制备和静电吸附自组装生长的条件相同,确保了裸光纤锥的锥角一致,不同裸光纤锥表面上生长的金纳米球密度相同,制备出的光纤SERS探针具有良好的互换性;2)测试光纤SERS探针时的条件基本一致。不同光纤探针测试时检测光路(光纤链路)的微小变化可能会引起光谱幅度的波动,在实际检测时,将激发光功率、光纤链路长度、光纤熔接损耗、光路耦合效率和光谱背景扣除等测试条件严格控制一致,使检测光路的变化对测试光谱幅度的影响最低。上述原因使得同一批次制备的不同光纤探针测得的SERS光谱具有基本相同的强度,光谱特征峰幅度的RSD较低。但是,在不同批次光纤探针的制备过程中,金属纳米颗粒溶胶配制的微小差异及金属纳米颗粒在光纤锥表面上的生长速率受环境参数支配等化学生长中固有的影响因素,使得不同批次制备的光纤探针所测的光谱幅度无法达到良好的重复性。

由于同一批次制备的光纤探针所测的光谱幅度RSD小,且同一批次的光纤探针有10根,故可考察同一批次光纤探针所测的光谱幅度与浓度之间的定量关系。图4为3个不同批次制备的光纤探针测得的SERS光谱的检测定量关系,分别由每一批次6根光纤探针单次测得的6个标准浓度(10-6、5×10-7、2×10-7、10-7、5×10-8、2×10-8 mol/L)福美双溶液SERS光谱中1386 cm-1拉曼特征峰幅度经数据拟合得到。可以看出,对于同一批次光纤探针,测得的1386 cm-1特征峰光谱幅度在2×10-8~10-6 mol/L浓度范围内均随浓度的增大而单调上升,变化规律与大量文献25-26报道的Langmuir函数相符。但是,不同批次光纤探针的Langmuir拟合曲线不重合,这就意味着不同批次制备的光纤探针须采用不同的定量关系曲线。而同一批次制备的光纤探针的数目有限,获取定量关系的检测样本的数目较少,会造成定量检测的不准确,同时,用于实际定量检测的剩余光纤探针的数目过少,使得这种定量检测很不经济。

图 4. 福美双溶液的1386 cm-1拉曼特征峰光谱幅度的拟合曲线(方块为数据,线为拟合线)

Fig. 4. Fitted curves of spectral amplitude of Raman characteristic peak at 1386 cm-1 for thiram solutions (square is data and line is fitted line)

下载图片 查看所有图片

因此,应设法消除不同批次光纤探针的光谱检测定量关系之间的差异并增加光谱样本数目。首先同化不同批次光纤探针的定量检测光谱数据,以提高不同批次光谱检测结果之间的互换性。大量研究结果已表明,SERS定量检测所得的光谱幅度与样品浓度基本满足Langmuir函数关系。本文图4所示实验结果也验证了这一函数关系,且同一批次制备的光纤探针测得的SERS光谱幅度的RSD较小。因此,可以参照图4的方法,采用同一批次(第i批次)制备的6根光纤探针,测量6个标准浓度点C1C2,…,C6处的光谱幅度,测量结果为Ii-c1Ii-c2Ii-c3,…,Ii-c6,依照Langmuir函数拟合得出该批次光纤探针的定量检测曲线。利用拟合所得的第ij批次的Langmuir定量检测曲线,获得任意浓度点Ck处第j批次相对于第i批次的光谱校准因子Rij(Ck)=Ii(Ck)/Ij(Ck)。利用该光谱校准因子,可以同化不同批次的光纤探针实际测得的光谱数据,即消除不同批次光纤探针的光谱检测定量关系之间的差异,从而提高不同批次探针的光谱检测互换性。利用光谱数据同化后具有互换性的不同批次光纤探针,可以获得标准浓度点处同化的大样本光谱数据,通过统计平均和Langmuir拟合,可消除单一批次的有限光纤探针造成的定量关系拟合曲线的误差。

为验证上述方法,我们制备了10批次光纤探针,利用每一批次的6根光纤探针,分别对6个福美双标准浓度点(10-6、5×10-7、2×10-7、10-7、5×10-8、2×10-8 mol/L)进行单次检测,获得了1386 cm-1拉曼特征峰的光谱数据,通过Langmuir函数I=abC1-d/(1+bC1-d)进行拟合,其中abd为待定系数,C为浓度。图5(a)所示为基于这10批次光纤探针的单次测量光谱数据拟合得到的定量曲线。可以看出,不同批次的定量曲线不重合。基于不同批次光纤探针测得的光谱数据进行拟合时拟合度也不相同,除了个别批次的拟合度可达0.990,其他批次对应的拟合度均低于该值,甚至低至0.975,这说明光谱数据样本过少会导致较大的拟合误差。选定第1批次光纤探针的定量关系曲线作为基准(不失一般性),对其他批次光纤探针测得的光谱数据进行同化校准,并对不同批次光纤探针的大样本光谱数据进行统计平均,重新进行Langmuir函数拟合,可得到图5(b)所示的光谱检测定量曲线,其中拟合函数为I=3318629437C0.84906/(1+172193C0.84906),拟合度高达0.999,这反映了使用大样本光谱数据获取定量曲线的优势。各标准浓度点处光谱幅度值的误差棒由同化后的10批次光谱数据计算所得,可见在2×10-8~10-6 mol/L浓度范围内,6个标准浓度点处的误差棒幅度较小,这表明不同批次探针在各浓度点处测得的光谱幅度经同化校准后在第1批次水平附近波动。图5(c)、(d)还分别给出了以第4批次和第8批次光纤探针的定量关系曲线作为基准时所得的光谱检测定量曲线,可见各标准浓度点处的误差棒幅度依然较小。因此,无论以哪一批次为基准批次,在对不同批次光纤探针测得的光谱幅度进行同化校准后均可获取基准批次水平的大样本光谱数据,进而通过统计平均和数据拟合可获取基准批次水平的定量曲线。

图 5. 光谱数据同化前后的定量曲线。(a)光谱数据同化前的定量曲线;以第(b)1、(c)4和(d)8批次光纤探针的定量关系曲线作为基准进行光谱数据同化后的定量曲线(方块为数据,线为拟合线)

Fig. 5. Quantitative curves before and after spectral data assimilation. (a) Quantitative curves before spectral data assimilation; quantitative curves after spectral data assimilation based on quantitative relationship curves of batch (b) 1, (c) 4 and (d) 8 fiber probes (square is data and line is fitted line)

下载图片 查看所有图片

进一步地,选定浓度为8×10-7 mol/L和8×10-8 mol/L的福美双标准溶液作为加标样品进行回收测试实验,以考察基于大样本光谱数据的定量曲线的实际定量检测能力。测试步骤如下:依次从前述10批次光纤探针中各取1根探针对同一浓度加标样品进行光谱测试,将每根探针(第j批)测得的1386 cm-1拉曼峰幅度与该批次的Langmuir曲线进行对照,获得单批次检出浓度值Cj';利用浓度为Cj'时的光谱校准因子,将每根探针测得的1386 cm-1拉曼峰幅度同化校准至第1批次水平后进行统计平均,最终将平均幅度值与图5(b)中的定量曲线进行对照,读取检出浓度值C'表1给出了基于图5(a)得到的单批次检出浓度值C1'~C10'和基于图5(b)得到的检出浓度值C'。可以看出,对于浓度为8×10-7 mol/L和8×10-8 mol/L的加标样品,单批次检出浓度值Cj'的波动较大,并且大部分Cj'与真实浓度的偏离较大。将基于定量关系曲线测定的样品浓度值与样品真实浓度值之间的比值定义为测试回收率,测试回收率低于或超出100%表明测得的样品浓度值小于或大于样品的真实浓度。经计算,对于两种浓度的加标样品,基于单批次定量曲线得到的测试回收率(R1~R10)分别分布在70.6%~118.3%和87.6%~142.5%区间,具体分布如表2所示。不同批次探针测得的光谱幅度经同化校准和统计平均后,将平均幅度值与图5(b)中的定量曲线进行对照,所得的检出浓度值C'与真实浓度的偏离较小,对于两种浓度的加标样品,回收率(R)分别为91.4%和106.1%。当选定第4批次光纤探针的定量关系曲线为基准进行相同的回收测试实验时,对于浓度为8×10-7 mol/L与8×10-8 mol/L的加标样品,测试回收率分别为90.2%和106.9%;当选定第8批次光纤探针的定量关系曲线为基准进行相同的回收测试实验时,对于浓度为8×10-7 mol/L与8×10-8 mol/L的加标样品,测试回收率分别为93.4%和104.7%。因此,当选取不同基准批次时,同化至基准批次的大样本光谱数据拟合所得的定量曲线也不同。在实际定量检测中,应当选取检出浓度最接近样品真实浓度时对应的基准批次作为后续定量检测的基准批次,以获取更准确的定量检测结果。在这里,部分单批次检出浓度Cj'与真实浓度的偏离较大,可能是单次测量方式引起的定量关系误差或者回收测试光谱幅度误差导致的;而基于各个单批次定量曲线所确定的光谱校准因子,可将不同批次探针测得的光谱幅度同化校准至任一选定的基准批次水平,统计平均后将平均幅度值与同一基准批次水平的大样本光谱数据进行对照,拟合获得的定量曲线可有效消除单批次探针定量检测中的误差,从而可以获取更加可靠的检出浓度。值得注意的是,静电吸附自组装方法制备的不同批次光纤探针存在微小差异,故不同批次光纤探针对应的定量曲线也不相同。选取合适的基准批次进行光谱数据同化处理,对于获取高精度的定量曲线至关重要。当基准批次对应的定量曲线精度较高时,有望获取接近100%的回收率,反之测试回收率将远离100%。

以上是基于批量制备的光纤探针(每批次10根光纤探针)所得的定量检测结果,10根光纤探针数目依然有限,不利于实际定量检测。但是,通过调整装配光纤的圆盘规格,可以实现每批次20根及以上的互换性良好的锥形光纤SERS探针的批量制备。此时,若采用上述同化校准方法来获取大样本光谱数据和定量曲线,则可富余更多光纤探针供实际定量检测使用。因此,对于简单经济的静电吸附自组装法批量制备的锥形光纤SERS探针,在对不同批次光纤探针所测的光谱数据进行同化处理后,光纤探针具有良好的互换性,可提供大样本光谱数据以获取高精度定量检测定标曲线,这有望推动SERS定量检测技术的实用化进程。

4 结论

研究了基于静电吸附自组装法批量制备的锥形光纤探针的SERS定量检测性能。通过统一制备条件,静电吸附自组装法批量制备的同一批次锥形光纤探针展现出了良好的互换性,同一批次的不同光纤探针测得的同一浓度福美双样品的SERS光谱幅度的RSD可达8%以下。但化学制备过程中的固有影响因素会造成不同批次光纤探针之间的互换性降低,为满足实际定量检测应用对光纤探针数目的要求,必须提高不同批次光纤探针之间的互换性。通过光谱数据同化方法,可将不同批次光纤探针测得的光谱数据同化至某一批次光纤探针测得的光谱数据附近。利用这种光谱数据同化方法,对10批次光纤探针测得的福美双样品SERS光谱数据进行同化处理,得到大样本光谱数据,通过统计平均和Langmuir函数拟合,获得了浓度为2×10-8~10-6 mol/L的福美双样品的SERS定量检测的定标曲线。基于该定标曲线,浓度为8×10-7 mol/L和8×10-8 mol/L的两种福美双加标样品的测试回收率可达90%~110%。研究结果为实际SERS定量检测应用研究提供了参考。

参考文献

[1] Zheng J K, He L L. Surface-enhanced Raman spectroscopy for the chemical analysis of food[J]. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(3): 317-328.

[2] Pang S, Yang T X, He L L. Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides[J]. TrAC Trends in Analytical Chemistry, 2016, 85: 73-82.

[3] Pahlow S, Meisel S, Cialla-May D, et al. Isolation and identification of bacteria by means of Raman spectroscopy[J]. Advanced Drug Delivery Reviews, 2015, 89: 105-120.

[4] 赖春红, 赖林, 张芝峻, 等. 基于金纳米颗粒-半胱胺SERS基底的水中硝酸根检测[J]. 中国激光, 2022, 49(11): 1111002.

    Lai C H, Lai L, Zhang Z J, et al. Nitrate detection in water based on AuNPs-cysteamine SERS substrate[J]. Chinese Journal of Lasers, 2022, 49(11): 1111002.

[5] 刘真真, 刘晓娴, 孙岩松, 等. 基于新型纳米材料的SERS免疫层析技术研究进展[J]. 光学学报, 2023, 43(17): 1712003.

    Liu Z Z, Liu X X, Sun Y S, et al. Research progress on SERS immunochromatographic assay technology based on novel nanomaterials[J]. Acta Optica Sinica, 2023, 43(17): 1712003.

[6] Chan Y F, Zhang C X, Wu Z L, et al. Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering[J]. Applied Physics Letters, 2013, 102(18): 183118.

[7] Zhao F T, Wang W P, Zhong H D, et al. Robust quantitative SERS analysis with Relative Raman scattering intensities[J]. Talanta, 2021, 221: 121465.

[8] Cai J Y, Wang Z Z, Jia S Y, et al. Si/TiO2/Ag multistorey structures with interfacial charge transfer for a recyclable surface-enhanced Raman scattering substrate[J]. ACS Applied Materials & Interfaces, 2022, 14(11): 13703-13712.

[9] Cai J Y, Liu R H, Jia S Y, et al. SERS hotspots distribution of the highly ordered noble metal arrays on flexible substrates[J]. Optical Materials, 2021, 122: 111779.

[10] Liu C, Wu J, Wang S, et al. Directional controllable electrodeposition growth of homogeneous Au nano-rampart arrays and its reliable SERS applications[J]. Journal of Electroanalytical Chemistry, 2022, 909: 116120.

[11] 孙伟, 洪瑞金, 陶春先, 等. 大面积图案化电场增强薄膜的设计及制备研究[J]. 中国激光, 2023, 50(23): 2303101.

    Sun W, Hong R J, Tao C X, et al. Design and preparation of large-area patterned electric field enhanced films[J]. Chinese Journal of Lasers, 2023, 50(23): 2303101.

[12] Yang S S, Liu G Q, Meng L P, et al. Gap-dependent SERS effect of ordered composite plasmonic nanoparticle arrays and its application for detection of sodium saccharin[J]. Optical Materials, 2021, 112: 110788.

[13] Liu Y, Zhou F, Wang H C, et al. Micro-coffee-ring-patterned fiber SERS probes and their in situ detection application in complex liquid environments[J]. Sensors and Actuators B: Chemical, 2019, 299: 126990.

[14] Gao D H, Yang X H, Teng P P, et al. Optofluidic in-fiber integrated surface-enhanced Raman spectroscopy detection based on a hollow optical fiber with a suspended core[J]. Optics Letters, 2019, 44(21): 5173-5176.

[15] Li L, Deng S X, Wang H, et al. A SERS fiber probe fabricated by layer-by-layer assembly of silver sphere nanoparticles and nanorods with a greatly enhanced sensitivity for remote sensing[J]. Nanotechnology, 2019, 30(25): 255503.

[16] Wang B T, Liu Y, Ai C W, et al. Highly sensitive SERS detection in a non-volatile liquid-phase system with nanocluster-patterned optical fiber SERS probes[J]. Optics Express, 2022, 30(10): 15846-15857.

[17] Kwak J, Lee W, Kim J B, et al. Fiber-optic plasmonic probe with nanogap-rich Au nanoislands for on-site surface-enhanced Raman spectroscopy using repeated solid-state dewetting[J]. Journal of Biomedical Optics, 2019, 24(3): 1-6.

[18] He G Y, Han X Y, Cao S Y, et al. Long spiky Au-Ag nanostar based fiber probe for surface enhanced Raman spectroscopy[J]. Materials, 2022, 15(4): 1498.

[19] Qin Y Y, Huang R D, Lu F Y, et al. Effects of the cone angle on the SERS detection sensitivity of tapered fiber probes[J]. Optics Express, 2022, 30(21): 37507-37518.

[20] Li T, Yu Z N, Wang Z K, et al. Optimized tapered fiber decorated by Ag nanoparticles for Raman measurement with high sensitivity[J]. Sensors, 2021, 21(7): 2300.

[21] Hutter T, Elliott S R, Mahajan S. Optical fibre-tip probes for SERS: numerical study for design considerations[J]. Optics Express, 2018, 26(12): 15539-15550.

[22] Cao J, Zhao D, Mao Q H. A highly reproducible and sensitive fiber SERS probe fabricated by direct synthesis of closely packed AgNPs on the silanized fiber taper[J]. Analyst, 2017, 142(4): 596-602.

[23] Yu M, Tian Q H, He G Y, et al. Surface-enhanced Raman scattering fiber probe based on silver nanocubes[J]. Advanced Fiber Materials, 2021, 3(6): 349-358.

[24] Yu F F, Su M K, Tian L, et al. Organic solvent as internal standards for quantitative and high-throughput liquid interfacial SERS analysis in complex media[J]. Analytical Chemistry, 2018, 90(8): 5232-5238.

[25] Cao J R, Huang Y L, Shang Z Y, et al. Fabrication of core shell Au@Ag supraparticles with 3D hotspots via evaporation self-assembly for sensitive surface enhanced Raman scattering detection[J]. Sensors and Actuators B: Chemical, 2023, 382: 133529.

[26] Lu G, Shrestha B, Haes A J. Importance of tilt angles of adsorbed aromatic molecules on nanoparticle rattle SERS substrates[J]. The Journal of Physical Chemistry C, 2016, 120(37): 20759-20767.

秦琰琰, 黄瑞冬, 刘孝兵, 钱诚, 薛驷明, 毛庆和. 锥形光纤SERS探针的批量制备和定量检测[J]. 中国激光, 2024, 51(5): 0513002. Yanyan Qin, Ruidong Huang, Xiaobing Liu, Cheng Qian, Siming Xue, Qinghe Mao. Batch Preparation and Quantitative Detection of Tapered SERS Fiber Probes[J]. Chinese Journal of Lasers, 2024, 51(5): 0513002.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!