辐射研究与辐射工艺学报, 2024, 42 (1): 010201, 网络出版: 2024-03-27  

γ射线辐照合成氮掺杂石墨单炔/铁催化剂及其性能

Synthesis of nitrogen-doped graphyne/iron catalysts via γ-ray irradiation and their properties
作者单位
1 天津工业大学纺织科学与工程学院 天津 300387
2 江苏大学材料科学与工程学院高分子材料研究学院 镇江 212013
摘要
本研究通过γ辐照与氮掺杂协同调控改性制备石墨炔,将二维石墨炔转变为一维管状结构并作为基底负载铁纳米粒子用于燃料电池阴极氧化还原反应(ORR)。运用扫描电镜、X射线衍射、拉曼光谱、等温氮气吸附和其他表征手段,对制备出的复合材料的表面形貌、元素组成、结晶结构、缺陷程度等进行了表征分析。在碱性溶液中,采用循环伏安测试、线性扫描伏安测试、电化学交流阻抗谱测试等电化学测试方法分析制备催化剂的ORR性能、动力学以及稳定性。结果表明:经γ射线辐照后,氮掺杂石墨单炔负载铁纳米粒子(NGY-Fe)催化剂具有更大的比表面积(411.3 m2/g)和多级孔结构,利于暴露出活性中心,O2渗透屏障也有所下降,NGY-Fe的ORR活性显著提高,尤其是在稳定性与耐甲醇性上远优于市售的商业Pt/C催化剂。
Abstract
In this study, graphdiyne was prepared using a γ-irradiated N-doping photogram to transform two-dimensional graphdiyne into a one-dimensional tubular structure for use as substrate-supported iron nanoparticles for cathodic redox reaction (ORR) in fuel cells. Methods such as scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and isothermal nitrogen adsorption and other characterization methods were used to characterize and analyze the surface morphology, element composition, crystalline structure, and defect degree of the prepared composites. In the alkaline solution, the prepared catalyst was characterized by ORR performance, four-electron selectivity, kinetics and stability via cyclic voltammetry test, linear sweep voltammetry test and electrochemical AC impedance spectroscopy test. The results showed that after γ-ray irradiation, the nitrogen-doped graphite monoalkyne-loaded iron nanoparticle (NGY-Fe) catalyst had a larger specific surface area (411.3 m2/g) and a multilevel pore structure, which was conducive to the exposure of the active center. Moreover, the O2 permeation barrier was decreased, and the ORR activity of the NGY-Fe was significantly improved, especially in terms of the stability and methanol resistance, which were far superior to those of the commercially available commercial Pt/C catalysts.

近年来,使用清洁可再生能源高效发电的燃料电池日益引起重视,不过电池负极上氧还原反应动力学迟缓,影响了其整体性能。所以,设计经济有效的电催化剂是增加金属氧电极反应催化活性的核心。贵金属催化剂因其较高的催化性能,是实际应用中的主要催化剂1-3。然而,贵金属的稀缺性、高成本和低稳定性限制了贵金属催化剂的应用4-6,迫使人们开发可替代材料,尽管目前已经研制出性能良好的非贵金属催化剂、合金催化剂等,但也面临着一定问题。因为金属与碳材料之间的电子吸附能力较低,而且金属纳米粒子在化学反应中非常容易团聚或脱落,所以选用理想的载体至关重要。碳基纳米材料因其特殊的结构和化学物理性质引起了人们的广泛关注,包括碳纳米纤维7-8、碳纳米管9-10、石墨烯11-12、石墨氮化碳13-14和生物炭15等。与其他材料相比,碳基催化剂在稳定性和耐久性方面具有更明显的优势,这可归因于两点:1)导电碳基体上负载纳米粒子(NPs)可以避免金属纳米粒子严重团聚,从而增强催化剂的导电性;2)碳层可以阻止内部纳米颗粒渗入电解液,避免因外部因素引起的腐蚀和氧化,从而赋予催化剂较高的耐久性7-8

石墨炔是sp和sp2杂化碳原子按照一定规则组成的新型二维碳材料16-17。特殊的sp和sp2杂化网络赋予石墨炔优异的性能,包括分布均匀的孔隙结构、大的比表面积、可调的电子性能和优异的电子导电性17-18。上述这些特性使得石墨炔在催化方面具有巨大的潜力19-21。例如,由乙炔键形成的石墨炔其特殊的大环结构为其作为催化剂提供了多孔结构和更多暴露的活性中心,实现快速传质22-23。此外,这些结构为作为支撑材料的石墨炔提供了大的比表面积。理论计算表明,与活性炭(2 000 m2/g)和石墨烯(实验值:1 500 m2/g,理论值:2 620 m2/g)相比,石墨炔(3 440 m2/g)具有更高的比表面积24-25,有利于催化剂纳米粒子在石墨炔上均匀分配,降低因颗粒聚集造成的催化活性损失26。与其他碳材料不同,sp-和sp2-C的共存使sp碳原子表现出正电特性27-28,有利于O2分子的吸附,从而促进电催化氧还原反应。此外,具有特殊炔键和高度共轭π-系统的杂化碳网络赋予石墨炔更高的性能,同时其由12个碳原子组成的六角环形成的孔是金属纳米颗粒最稳定的吸附位点,使得石墨炔成为碳基负载非贵金属复合材料的潜在碳载体。

然而,理论和实验研究已经共同表明,原始石墨单炔的高O2屏障使其在氧还原反应中活性较低,并且材料缺少活性位点,不太适于直接作为燃料电池阴极催化剂。本课题组已经利用γ射线辐照的方法成功制备了氟掺杂石墨炔基铂/钯纳米颗粒复合材料,并将其应用于燃料电池阴极催化剂29;还通过sp-N掺杂和γ射线辐照的协同调控,研究了石墨单炔作为碳材料基底负载铂纳米颗粒及其氧还原反应性能30。为深入探索γ辐照对石墨单炔活性位点与负载性能的影响,本文选用高能量、强穿透力、环保及在室温下反应的γ射线辐照N掺杂石墨单炔作为碳基负载体,成功制备了具有优异电化学活性和长期稳定性的管状石墨炔催化剂,并探究了γ辐照对N掺杂石墨单炔负载铁纳米粒子催化剂结构和氧化还原反应催化性能的影响。

1 材料与方法

1.1 原料与试剂

碳化钙、六溴苯、氯铂酸、甲醇、己烷、异丙醇、聚氧乙烯月桂醚(Brij30®)等均为分析纯;无水乙醇,高纯;氢氧化钾,优级纯;以上均购自天津市科密欧化学试剂有限公司。浓硝酸,分析纯,天津市北方天医试剂厂。三聚氰胺、六水合氯化铁,分析纯,上海麦克林生化科技有限公司。超纯水,一级纯,天津市蓝水晶公司。商用铂碳,分析纯,中科科创新能源有限公司。氮气、氧气,高纯,天津六方气体有限公司。全氟磺酸型聚合物溶液、Nafion,分析纯,杜邦中国有限公司。

1.2 制备过程

1.2.1 石墨单炔的制备

本研究采用机械化学合成法(球磨法)制备石墨炔(GY),实验步骤如下:(1)将块状碳化钙在手套箱中研磨至粒径小于0.15 mm备用;(2)将0.434 g六溴苯、0.503 9 g碳化钙和37.5 g球磨珠放入球磨罐中,将氩气冲入前体化合物中,在氩气的气氛下球磨处理12 h;(3)将球磨后获得的中间产物放入高温管式炉,并保持在氩气介质中,设定升温速率为5 ℃/min,在450 ℃下煅烧处理2 h;(4)将高温处理后的中间产物使用1 mol/L的稀硝酸、超纯水,采用离心机多次洗涤以去除未反应的碳化钙和溴化钙的副产物;(5)放入80 ℃真空烘箱中进行干燥处理,最终所得黑色粉末即为GY样品。

1.2.2 γ辐照氮掺杂石墨单炔负载铁NPs催化剂的制备

将GY和三聚氰胺分散在100 mL乙醇中,充分混合后,将上述悬浮液超声处理30 min;将上述溶液在真空烘箱中干燥20 h得到前驱体;将上述前驱体加入到100 mL微乳液中(微乳液由Brij30®、己烷和异丙醇以9.5%、54.0%和36.5%的体积比配制而成)。然后,将上述溶液超声处理30 min,将六水合氯化铁添加到混合溶液中(铁源和碳源GY的质量总和为15 mg),加水直至 200 mL,并在室温连续搅拌24 h充分进行离子交换。最后,将所得的悬浮液倒入棕色试剂瓶中,通入氩气约30 min排除空气,最后密封试剂瓶。采用γ射线辐照试剂瓶至总吸收剂量为150 kGy。辐照完成后,用超纯水将样品离心数次以去除杂质离子(离心速度设置为10 000 r/‍min,10 min/次),最后,在内部压力小于10 Pa,冷凝温度为-50 ℃,冷冻干燥获得催化剂NGY-Fe。

1.3 表征方法

1.3.1 扫描电子显微镜测试

采用Gemini SEM 500扫描电子显微镜(SEM)测试表征制备样品的形貌、颗粒大小及分布情况。

1.3.2 透射电子显微镜测试

采用透射电子显微镜(TEM)表征材料的微观结构和形貌。采用TEM与X射线能谱仪联用表征样品表面的元素分布、掺杂及含量。利用Digital Micrograph软件对获得的图像进行数据处理,得到材料的晶面间距、晶格信息和衍射环。

1.3.3 X射线光电子能谱表征

采用型号为Thermo ESCALAB-250Xi的X射线光电子能谱(XPS)表征催化剂表面的元素成分、存在状态及相对含量。

1.3.4 激光共焦拉曼光谱表征

使用激光共焦拉曼光谱仪(产自日本,规格是XploRA PLUS)(Raman),波长λ=532 nm表征催化剂样品的缺陷结构和石墨化程度。

1.3.5 比表面积及孔径分布表征

利用BET(Brunauer-Emmett-Teller)和BJH(Barrett-Joyner-Halenda)方法对氮气吸脱附等温曲线进行分析,获得材料的比表面积、孔体积和孔径分布等信息。

1.3.6 催化剂电化学性能测试

使用上海辰华(型号为CHI760E)的电化学工作站进行电化学测试;使用标准三电极体系,工作电极为催化剂薄膜涂层旋转圆盘-环盘电极(RRDE,直径4 mm,GCE,即玻碳电极),对电极为铂丝电极,参比电极为Hg/HgO;电解池使用双层五口电解池(美国Pine型旋转圆盘-环电极仪器)。

2 结果与讨论

2.1 辐照催化剂的结构与形貌表征

六水合氯化铁与GY以质量比为1∶3、2∶3、1∶2、4∶5和1∶1制备的样品分别命名为NGY-Fe1/3、NGY-Fe2/3、NGY-Fe1/2、NGY-Fe4/5和NGY-Fe1/1图1(a)为NGY-Fe催化剂制备流程图。图1(b)为γ射线辐照后制备的样品在SEM下的图像。

图 1. (a)NGY-Fe催化剂制备流程图;经过γ辐照后,NGY-Fe样品的(b)SEM图像和(c)TEM图像;(d)通过SEM内置的EDS得到的NGY-Fe样品的元素(C、N和Fe)分布图

Fig. 1. (a) Flow chart of NGY-Fe catalyst preparation; (b) SEM image and (c) TEM image of NGY-Fe sample prepared after γ irradiation; (d) elemental distribution (C, N and Fe) plots of NGY-Fe samples obtained by SEM's built-in EDS

下载图片 查看所有图片

图1可以看出,样品呈现出一维管状结构,且在纳米块表面存在尺寸不一的纳米孔和白色絮状物质,这可能归因于经高能γ射线辐照的破碎作用后产生的小片层且尺寸小于10 nm的GY/N-GY聚集体,进而导致GY形貌发生变化。图1(c)为NGY-Fe TEM图像,呈现出管状包覆结构,其中NGY载体在γ辐照和微乳剂协同作用下使纳米片表面自由能变小,载体由二维片层状结构自卷曲转变为纳米管结构。这种管状结构有利于O2和电解质的扩散和传输,材料表面的活性位点更易暴露,从而使氧还原反应的过电位降低。通过元素映射图像,再次验证了C、N和Fe元素均匀分布在NGY-Fe样品中(图1(d)),证明氮和铁已成功引入到催化剂中。

通过XPS测试(图2(a))进一步深入研究了NGY-Fe的表面组成和化学价态。观察到样品NGY-Fe不同深度处XPS全光谱和相应元素含量的变化。经γ射线辐照后制备的NGY-Fe样品比原始GY多了两个峰,分别是N1s和Fe2p,进一步证明了成功制备出NGY-Fe材料。对NGY-Fe元素谱图进行分峰处理。NGY-Fe的C1s光谱如图2(c)所示,可反褶积为4个峰,结合能为283.7 eV、284.9 eV、287.6 eV和289.3 eV,分别对应于C-C(sp2)键、C-C(sp)键、C=N键和C=O键。Fe2p光谱反褶积成3个峰,分别位于707.5 eV、708.1 eV和711.5 eV,分别对应于Fe3+的Fe-N键、Fe-C键和Fe2p3/2特征峰(图2(d))。N1s光谱反褶积为398.7 eV、399.6 eV、402.6 eV和403.9 eV 4个峰,分别对应于吡啶-N、石墨-N、氧化氮化合物和Fe-N键的特征峰(图2(e))。

图 2. (a)γ射线辐照后NGY-Fe样品和GY样品的高分辨率核心级XPS全谱图;(b)NGY-Fe样品的Raman谱图;(c)C1s、(d)Fe2p和(e)N1s的高分辨率核心级XPS分峰光谱

Fig. 2. (a) High-resolution core-grade XPS full spectra of NGY-Fe samples and GY samples after γ irradiation; (b) Raman spectra of NGY-Fe samples; high-resolution core-level XPS peak splitting spectra of (c) C1s, (d) Fe2p and (e) N1s

下载图片 查看所有图片

此外,通过Raman光谱研究了催化剂的结构变化和石墨化程度,结果如图2(b)所示。所有NGY-Fe催化剂的Raman光谱均具有明显的D峰和G峰,其中,D峰代表样品的缺陷程度,G峰代表样品的石墨化程度。与本征的GY相比,经γ射线辐照后的NGY-Fe催化剂显示出更高的ID/IG,表明γ射线辐照处理后的催化剂材料产生了更多的缺陷和边缘位置。与其他NGY-Fe样品相比,NGY-Fe1/2的ID/IG值要更高,这可能是由于铁源和碳源的适当比例,Fe、N共掺杂与γ射线辐照协同调控使NGY-Fe1/2具有更高的缺陷率,这提供了大量有利于催化性能的活性位点。表1为制备催化剂和商业Pt/C催化剂的结构性质。由表1可知,催化剂NGY-Fe1/2的比表面积为411.3 m2/g,远高于商用Pt/C催化剂(182.5 m2/g),且经过辐照后的样品NGY-Fe1/2比未经辐照的Fe1/2-N-graphyne样品具有更大的比表面积和孔径。以上结果都进一步证明了Fe、N共掺杂与γ射线辐照协同调控对于氧还原催化材料的结构具有正向作用,有利于提高催化剂的ORR活性。

表 1. 制备催化剂和商业Pt/C催化剂的结构性质

Table 1. Structural properties of the prepared catalysts and commercial Pt/C catalysts

催化剂 CatalystsGraphyneNGY-Fe1/2Fe1/2-N-graphynePt/C

比表面积 / (m2·g-1)

Specific surface area

230.7411.3391.8182.5

孔径 / nm

Pore size

3.88.36.03.4

查看所有表

2.2 辐照催化剂的电化学氧还原性能

在碱性溶液中对γ辐照制备的催化剂进行了旋转圆盘电极(RDE)和旋转环盘电极(RRDE)电催化测试。在氧气饱和的0.1 mol/L氢氧化钾电解液中,采用RDE对NGY-Fe催化剂进行了氧还原反应的循环伏安测试(图3(a)),并使用1 600 r/min下的线性扫描伏安(LSV)极化曲线来评估所有NGY-Fe催化剂与商用Pt/C催化剂的氧还原反应性能(图3(b))。

图 3. (a)NGY-Fe催化剂和商用Pt/C催化剂在0.1 mol/L KOH电解液中的循环伏安曲线;(b)NGY-Fe催化剂和商用Pt/C催化剂在转速为1 600 r/min时的极化曲线(彩色见网络版)

Fig. 3. (a) Cyclic voltammetry curves of NGY-Fe catalysts and commercial Pt/C catalysts in 0.1 mol/L KOH electrolyte; (b) polarisation curves of NGY-Fe catalyst and commercial Pt/C catalyst at 1 600 r/min (color online)

下载图片 查看所有图片

所有NGY-Fe催化剂都显示出比商用Pt/C催化剂更高的正氧化物脱附峰电位,具有更强的电正性(图3(a))。另外,与市售Pt/C催化剂相比,NGY-Fe催化剂大都显示出更正的极限扩散电流密度、起始电势和半波电势(图3(b))。与原始石墨炔相比,γ射线辐照制备的NGY-Fe催化剂具有优异的电化学性能(表2)。辐照改性后的NGY-Fe不仅比表面积增大,暴露出更多的活性中心,还使铁纳米粒子在催化剂中分散更加均匀,促进了反应过程中的传质。此外,GY本身与铁纳米氧化物颗粒之间的强吸附作用力有利于避免颗粒的团聚/脱落,保证了材料的导电性,且辐照后制备的样品呈现管状结构,有利于提高催化剂的催化活性。在所有制备的NGY-Fe催化剂中,NGY-Fe1/2催化剂具有最高的ORR电催化性能,NGY-Fe1/2催化剂的正氧化物脱附峰电位为0.787 V,起始电势0.903 V,半波电势0.782 V,极限电流密度为5.32 mA/cm2图3(a)、(b))。

表 2. 制备NGY-Fe催化剂和商用Pt/C催化剂的氧还原催化活性

Table 2. Oxygen reduction catalytic activity of prepared NGY-Fe catalysts and commercial Pt/C catalysts

催化剂

Catalysts

起始电位 / V

Starting potential

半波电位 / V

Half-wave potential

极限电流密度 / (mA∙cm-2)

Limiting current density

循环伏安测试峰值电位 / V

Cyclic voltammetry peak potential

Pt/C0.9320.7715.210.767
Graphyne0.7330.5002.490.582
Fe1/2-N-graphyne0.9640.7635.140.719
NGY-Fe1/30.8250.6113.670.777
NGY-Fe1/20.9030.7825.320.787
NGY-Fe2/30.8150.6944.720.782
NGY-Fe4/50.8910.7015.380.761
NGY-Fe1/10.8870.6894.650.773

查看所有表

图4(a)为不同转速下NGY-Fe1/2催化剂的极化曲线。图4(b)为0.1~0.4 V(相对于可逆氢电极(RHE))下根据不同转速的极化曲线拟合的K-L方程图。由K-L方程拟合得到的平均转移电子数(n)约为4.53。通过电化学交流阻抗谱(EIS)评估了材料的电荷转移阻力和质量扩散过程(图4(c)),得到样品NGY-Fe1/2和商用Pt/C催化剂的奈奎斯特对比图。中高频处半圆反映出NGY-Fe1/2样品的电荷转移电阻远小于商用Pt/C催化剂。为确保结果的可信度,还通过不同电位下的RRDE重新计算了NGY-Fe1/2催化剂的平均转移电子数。如图5(a)所示,催化剂的转移电子数约为3.98。进一步证明了NGY-Fe1/2催化剂的氧还原反应过程可以看作是一级反应,并遵循四电子转移过程,这是氧吸附和电荷转移的结果。

图 4. (a)最优样品NGY-Fe1/2在不同转速下的LSV曲线;(b)最优样品NGY-Fe1/2在不同电位下对应的K-L曲线;(c)样品NGY-Fe1/2和商用Pt/C催化剂的奈奎斯特图(彩色见网络版)

Fig. 4. (a) LSV curves of the optimal sample NGY-Fe1/2 at different rotational speeds; (b) K-L curves corresponding to the optimal sample NGY-Fe1/2 at different potentials; (c) nyquist plots of samples NGY-Fe1/2 and commercial Pt/C catalyst (color online)

下载图片 查看所有图片

图 5. 根据RRDE实验测试得样品NGY-Fe1/2和商用Pt/C催化剂的(a)转移电子数(n);(b)氧还原反应过程中H2O2产率

Fig. 5. Number of (a) transferred electrons (n) of samples NGY-Fe1/2 and commercial Pt/C catalysts obtained according to RRDE experimental tests; (b) H2O2 yield during oxygen reduction reaction

下载图片 查看所有图片

为了进一步验证四电子过程,通过RRDE计算了反应过程中的过氧化氢产率。如图5(b)所示,在0~0.8 V范围内,氧还原反应过程中NGY-Fe1/2催化剂的H2O2产率始终低于7%,与商业Pt/C催化剂相比,制备的催化剂材料反映出相对优越的氧还原电催化活性。

通过观察到的塔菲尔斜率可以揭示反应动力学。如图6所示,NGY-Fe1/2催化剂的塔菲尔斜率为92 mV/dec,小于商用Pt/C催化剂(98.2 mV/dec)。结果表明,相较商用Pt/C催化剂,γ辐照制备的NGY-Fe1/2催化剂具有更快的氧还原反应动力学。除此之外,在实际应用中,电催化剂的恒定运行稳定性决定了其使用寿命。本研究通过I-t曲线来表征NGY-Fe1/2催化剂和商用Pt/C催化剂的耐久性。在5 000 s的稳定性测试后,NGY-Fe1/2催化剂的初始电流衰减了约27.31%,商用Pt/C催化剂的初始电流衰减了约43.41%(图7(a)),表明NGY-Fe1/2催化剂的稳定性在相同条件下远高于市售Pt/C催化剂的稳定性。

图 6. 根据NGY-Fe1/2催化剂和Pt/C催化剂的氧还原反应极化数据计算得到的塔菲尔斜率

Fig. 6. Tafel slope calculated based on the polarization data of oxygen reduction reaction of NGY-Fe1/2 catalyst and Pt/C catalyst

下载图片 查看所有图片

采用计时电流法测试NGY-Fe1/2催化剂对甲醇的耐受性,测试进行200 s时将甲醇注入O2饱和KOH电解液中。从图7(b)可知,在加入甲醇的那一刻,商用Pt/C催化剂的初始电流密度发生了明显的骤降,且电流密度逐渐衰减,在400 s测试结束后,初始电流密度衰减了45.35%。相较于商用Pt/C催化剂,注入甲醇对NGY-Fe1/2催化剂的电流密度影响较小,且在400 s过后,NGY-Fe1/2催化剂的初始电流密度仅衰减了19.8%,以上测试结果表明,在抗甲醇毒性方面,NGY-Fe1/2催化剂具有比商用Pt/C催化剂更好的ORR电催化选择性。

图 7. (a) NGY-Fe1/2催化剂和Pt/C催化剂的I-t曲线;(b) NGY-Fe1/2催化剂和Pt/C催化剂甲醇耐受性曲线

Fig. 7. (a) I-t curves of NGY-Fe1/2 catalyst and Pt/C catalyst; (b) Methanol tolerance curves for NGY-Fe1/2 catalyst and Pt/C catalyst

下载图片 查看所有图片

3 结论

综上所述,我们通过γ辐照与氮掺杂协同调控改性制备出NGY-Fe管状催化剂,实现了石墨炔从二维层状结构到一维管状结构的转变,制备的NGY-Fe1/2催化剂具有高度互连的导电网络和充足的缺陷表面活性中心。碱性条件下,NGY-Fe1/2催化剂具有比市售Pt/C催化剂更高的催化性能。尤其是NGY-Fe1/2催化剂,具有最优的催化活性,其含氧化合物脱附峰的电位为0.787 V,起始电势为0.903 V,半波电势为0.782 V,极限扩散电流密度为 5.32 mA/cm2,高于其他NGY-Fe催化剂。除此之外,NGY-Fe1/2催化剂在抗甲醇毒性和稳定性上远高于Pt/C催化剂。

参考文献

[1] Liu L S, Shi X A, Wang W, et al. Carbon nitride/positive carbon black anchoring PtNPs assembled by γ-rays as ORR catalyst with excellent stability[J]. Nanotechnology, 2021, 32(34): 345601.

[2] Shi Y, Yin S K, Ma Y R, et al. Oleylamine-functionalized palladium nanoparticles with enhanced electrocatalytic activity for the oxygen reduction reaction[J]. Journal of Power Sources, 2014, 246: 356-360.

[3] Jia J J, Chen Z, Liu Y J, et al. RuN2 monolayer: a highly efficient electrocatalyst for oxygen reduction reaction[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 54517-54523.

[4] Shi X A, Wang W, Miao X R, et al. Constructing conductive channels between platinum nanoparticles and graphitic carbon nitride by gamma irradiation for an enhanced oxygen reduction reaction[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46095-46106.

[5] Liu S S, Wang W, Hu Y L, et al. Hetero-shaped coral-like catalysts through metal-support interaction between nitrogen-doped graphene quantum dots and PtPd alloy for oxygen reduction reaction[J]. Electrochimica Acta, 2020, 364: 137314.

[6] Zhao X M, Li N, Jing M L, et al. Monodispersed and spherical silver nanoparticles/graphene nanocomposites from gamma-ray assisted in situ synthesis for nitrite electrochemical sensing[J]. Electrochimica Acta, 2019, 295: 434-443.

[7] Wang H, Sun C, Cao Y J, et al. Molybdenum carbide nanoparticles embedded in nitrogen-doped porous carbon nanofibers as a dual catalyst for hydrogen evolution and oxygen reduction reactions[J]. Carbon, 2017, 114: 628-634.

[8] Li M X, Wang H Y, Zhu W D, et al. RuNi nanoparticles embedded in N-doped carbon nanofibers as a robust bifunctional catalyst for efficient overall water splitting[J]. Advanced Science, 2020, 7(2): 1901833.

[9] Yan Y B, Miao J W, Yang Z H, et al. Carbon nanotube catalysts: recent advances in synthesis, characterization and applications[J]. Chemical Society Reviews, 2015, 44(10): 3295-3346.

[10] Pan X L, Fan Z L, Chen W, et al. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles[J]. Nature Materials, 2007, 6(7): 507-511.

[11] Huang C C, Li C, Shi G Q. Graphene based catalysts[J]. Energy & Environmental Science, 2012, 5(10): 8848-8868.

[12] Hareesh K, Joshi R P, Dahiwale S S, et al. Synthesis of Ag-reduced graphene oxide nanocomposite by gamma radiation assisted method and its photocatalytic activity[J]. Vacuum, 2016, 124: 40-45.

[13] Zheng Y, Jiao Y, Zhu Y H, et al. Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions[J]. Journal of the American Chemical Society, 2017, 139(9): 3336-3339.

[14] Zheng Y, Jiao Y, Chen J, et al. Nanoporous graphitic-C3N4@Carbon metal-free electrocatalysts for highly efficient oxygen reduction[J]. Journal of the American Chemical Society, 2011, 133(50): 20116-20119.

[15] Lee J, Kim K H, Kwon E E. Biochar as a catalyst[J]. Renewable and Sustainable Energy Reviews, 2017, 77: 70-79.

[16] 黄长水, 李玉良. 二维碳石墨炔的结构及其在能源领域的应用[J]. 物理化学学报, 2016, 32(6): 1314-1329.

    HUANG Changshui, LI Yuliang. Structure of 2D graphdiyne and its application in energy fields[J]. Acta Physico-Chimica Sinica, 2016, 32(6): 1314-1329.

[17] Gao X, Liu H B, Wang D, et al. Graphdiyne: synthesis, properties, and applications[J]. Chemical Society Reviews, 2019, 48(3): 908-936.

[18] Chen J M, Xi J Y, Wang D, et al. Carrier mobility in graphyne should be even larger than that in graphene: a theoretical prediction[J]. The Journal of Physical Chemistry Letters, 2013, 4(9): 1443-1448.

[19] Si W Y, Yang Z, Wang X, et al. Fe, N-codoped graphdiyne displaying efficient oxygen reduction reaction activity[J]. ChemSusChem, 2019, 12(1): 173-178.

[20] Dong Y Z, Zhao Y M, Chen Y H, et al. Graphdiyne-hybridized N-doped TiO2 nanosheets for enhanced visible light photocatalytic activity[J]. Journal of Materials Science, 2018, 53(12): 8921-8932.

[21] Lyu J X, Zhang Z M, Wang J A, et al. In situ synthesis of CdS/graphdiyne heterojunction for enhanced photocatalytic activity of hydrogen production[J]. ACS Applied Materials & Interfaces, 2019, 11(3): 2655-2661.

[22] Shi H, Xia M, Jia L T, et al. First-principles study on the adsorption and diffusion properties of non-noble (Fe, Co, Ni and Cu) and noble (Ru, Rh, Pt and Pd) metal single atom on graphyne[J]. Chemical Physics, 2020, 536: 110783.

[23] Kang B T, Lee J Y. Graphynes as promising cathode material of fuel cell: improvement of oxygen reduction efficiency[J]. The Journal of Physical Chemistry C, 2014, 118(22): 12035-12040.

[24] Lu S Y, Jin M, Zhang Y, et al. Chemically exfoliating biomass into a graphene-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors[J]. Advanced Energy Materials, 2018, 8(11): 1702545.

[25] Wu Z S, Zhou G M, Yin L C, et al. Graphene/metal oxide composite electrode materials for energy storage[J]. Nano Energy, 2012, 1(1): 107-131.

[26] Song B, Chen M, Zeng G M, et al. Using graphdiyne (GDY) as a catalyst support for enhanced performance in organic pollutant degradation and hydrogen production: a review[J]. Journal of Hazardous Materials, 2020, 398: 122957.

[27] Srinivasu K, Ghosh S K. Graphyne and graphdiyne: promising materials for nanoelectronics and energy storage applications[J]. The Journal of Physical Chemistry C, 2012, 116(9): 5951-5956.

[28] Kang B T, Liu H G, Lee J Y. Oxygen adsorption on single layer graphyne: a DFT study[J]. Physical Chemistry Chemical Physics, 2014, 16(3): 974-980.

[29] Wang W, Liu S S, Min C Y, et al. A cathode material of fuel cells: F-doped γ-graphyne/PtPd nanocomposite from plasma activation and gamma irradiation[J]. ACS Applied Energy Materials, 2022, 5(2): 2036-2044.

[30] Wang W, Yao F T, Zeng M, et al. Sp-nitrogen and γ-ray modulating multiply γ-graphyne for anchoring Pt nanoparticles to boost oxygen reduction activity and stability[J]. Applied Materials Today, 2022, 29: 101626.

董英杰, 石海婷, 王硕, 闵春英, 王道喜, 邵瑞琪, 徐志伟. γ射线辐照合成氮掺杂石墨单炔/铁催化剂及其性能[J]. 辐射研究与辐射工艺学报, 2024, 42(1): 010201. Yingjie DONG, Haiting SHI, Shuo WANG, Chunying MIN, Daoxi WANG, Ruiqi SHAO, Zhiwei XU. Synthesis of nitrogen-doped graphyne/iron catalysts via γ-ray irradiation and their properties[J]. Journal of Radiation Research and Radiation Processing, 2024, 42(1): 010201.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!