大气与环境光学学报, 2021, 16 (5): 443, 网络出版: 2021-11-22  

2004-2018 年间中国区域气溶胶时空变化特征研究

Spatio-Temporal Characteristics of Aerosols in China During 2004-2018
作者单位
1 安徽师范大学地理与旅游学院, 安徽 芜湖 241002
2 资源环境与地理信息工程安徽省工程技术研究中心, 安徽 芜湖 241002
摘要
基于 2004-2018 年 MODIS 长期观测的气溶胶日产品 MOD04_L2, 利用线性倾向估计法和 AOD-AE 气溶胶类型划分法, 得到中国区域长时间序列的气溶胶光学特性与气溶胶类型的时空变化规律。研究表明, 在此期间: (1) 550 nm 处气溶胶光学厚度 (AOD) 高值分布在海拔较低、人口密集、工业发达的大城市群, 低值分布在人烟稀少、植被覆盖度高的山区和草原; ngstrm 波长指数 (AE) 高值分布在四川盆地边缘、贵州等地区, 低值分布在西北沙漠地区。(2) 中国 73% 的地区 AOD 呈减小趋势, “胡焕庸线”东部的 AE 整体也呈减小趋势, 且 AOD 与 AE 均在 2014-2018 年期间明显减小。(3) 在季节变化趋势方面, AE 与 AOD 基本相反, 城市工业型气溶胶与 AOD 相同, 而清洁大陆型气溶胶与 AOD 相反。(4) 清洁大陆型气溶胶占比在 2014 年之后逐年递增, 说明中国空气质量逐渐改善。
Abstract
Based on MODIS long term observations of aerosol daily product MOD04-L2, the temporal and spatial variations of aerosol optical properties and aerosol types in China from 2004 to 2018 are obtained using linear tendency estimation and AOD-AE aerosol classification methods. It is shown that during 2004-2018 : (1) high aerosol optical depth (AOD), values (550nm) are distributed in large urban agglomerations with low altitude, dense population and developed industries, while low AOD values are distributed in sparsely populated areas with high vegetation coverage mountains and grasslands. Areas such as Guizhou and the edge of Sichuan Basin are highlighted with high ngstrm exponents (AE) and northwestern desert area with low values. (2) In 73 percent regions of China, AOD shows a decreasing trend during the observation period, and AE in the Eastern part of the “Hu Huanyong Line” also shows a decreasing trend. Especially, it is found that both AOD and AE decreased significantly during 2014-2018. (3) In terms of seasonal and monthly change trends, AE and clean continental aerosol are opposite to AOD, while urban industrial aerosol is the same as AOD. (4) The proportion of clean continental aerosols has increased year by year since 2014, indicating that air quality in China has gradually improved.
参考文献

[1] Cai W, Li K, Liao H, et al. Weather conditions conducive to Beijing severe haze more frequent under climate change [J]. Nature Climate Change, 2017, 7(4): 257-262.

[2] Huang R J, Zhang Y, Bozzetti C, et al. High secondary aerosol contribution to particulate pollution during haze events in China [J]. Nature, 2014, 514(7521): 218-222.

[3] Li T H, Ma J H, Mo B. Does environmental policy affect green total factor productivity? Quasi-natural experiment based on China's air pollution control and prevention action plan [J]. International Journal of Environmental Research and Public Health, 2021, 18(15): 8216.

[4] Huang J, Pan X C, Guo X B, Li G X. Health impact of China's air pollution prevention and control action plan: An analysis of national air quality monitoring and mortality data [J]. The Lancet Planetary Health, 2018, 2(7): e313-e323.

[5] Liu Haizhi, Guo Haiyan, Ma Zhenfeng, et al. Temporal-spatial characteristics and variability in aerosol optical depth over China during 2001-2017 [J]. Environmental Science, 2019, 40(09): 3886-3897.

[6] Ma Lixin, Qi Hong, Sun Xiazhong. Research progress on aerosol particle size distribution characteristics and respiratory system exposure assessment [J]. Acta Scientiae Circumstantiae, 2020, 40(10): 3549-3558.

[7] 冯录召, 梁宗安, 杨 丽. 新冠病毒可通过气溶胶传播! [N]. 大众健康报, 2020-02-27(003).

[8] Wang Chenying, He Muquan, Chen Junhui, et al. Temporal and spatial variation characteristics of MODIS aerosol optical depth in Sichuan Basin from 2006 to 2017 [J]. Research of Environmental Sciences, 2020, 33(01): 54-62.

[9] Bilal M, Nichol J E, Bleiweiss M P, et al. A simplified high resolution MODIS aerosol retrieval algorithm (SARA) for use over mixed surfaces [J]. Remote Sensing of Environment, 2013, 136: 135-145.

[10] Wang Hailin, Liu Qiong, Chen Yonghang, et al. Applicability of MODIS C006 aerosol products in a typical environmental area of the Beijing-Tianjin-Hebei region [J]. Environmental Science, 2019, 40(01): 44-54.

[11] Zhang Yinglei, Cui Ximin. Spatial and temporal characteristics of AOD and ngstrm exponent in the Yangtze River Delta based on MODIS_C061 [J]. Environmental Science, 2020, 41(06): 2617-2624.

[12] Wang Yuesi, Xin Jinyuan, Li Zhanqing, et al. AOD and ngstrm parameters of aerosols observed by the Chinese sun hazemeter network from August to December 2004 [J]. Environmental Science, 2006, 27(9): 1703-1711.

[13] Zhao Shiwei, Gao Xiaoqing. Study of aerosol optical depth and ngstrm exponent in the northwest of China based on MODIS product [J]. Journal of Atmospheric and Environmental Optics, 2017, 12(05): 321-331.

[14] Chen Hao, Gu Xingfa, Cheng Tianhai, et al. Characteristics of aerosol types over China [J]. Journal of Remote Sensing, 2013, 17(06): 1559-1571.

[15] Kim S W, Yoon S C, Kim J Y, et al. Seasonal and monthly variations of columnar aerosol optical properties over east Asia determined from multi-year MODIS, lidar and AERONET sun/sky radiometer measurements [J]. Atmospheric Environment, 2007, 41(8): 1634-1651.

[16] Zhang J, Reid J S. A decadal regional and global trend analysis of the aerosol optical depth using a data-assimilation grade over-water MODIS and Level 2 MISR aerosol products [J]. Atmospheric Chemistry and Physics, 2010, 10(22): 10949-10963.

[17] Guo Wanzhen, Zhang Fei, Xia Nan, et al. Spatio-temporal characteristics of aerosol optical depth and their relationship with urbanization over China's land in nearly a decade [J]. Acta Scientiae Circumstantiae, 2019, 39(07): 2339-2352.

[18] Lei Xi. The Spatial and Temporal Characteristics of Atmospheric Aerosol and Its Environmental Effects over the Belt and Road [D]. Chongqing: Southwest University, 2019.

[19] Zhou C Y, Liu Q H, Tang Y, et al. Comparison between MODIS aerosol product C004 and C005 and evaluation of their applicability in the north of China [J]. Journal of Remote Sensing, 2009, 13(5): 854-872.

[20] Ichoku C, Kaufman YJ, Remer L A, et al. Global aerosol remote sensing from MODIS [J]. Advances in Space Research, 2004, 34(4): 820-827.

[21] Levy R C, Remer L A, Mattoo S, et al. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance [J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D13): D13211.

[22] Remer L A, Kaufman Y J, Tanré D, et al. The MODIS aerosol algorithm, products and validation [J]. Journal of the Atmospheric Sciences, 2005, 62(4): 947-973.

[23] Levy R C, Mattoo S, Munchak L A, et al. The Collection 6 MODIS aerosol products over land and ocean [J]. Atmospheric Measurement Techniques, 2013, 6(11): 2989-3034.

[24] Kumar K R, Kang N, Yin Y. Classification of key aerosol types and their frequency distributions based on satellite remote sensing data at an industrially polluted city in the Yangtze River Delta, China [J]. International Journal of Climatology, 2018, 38(1): 320-336.

[25] Zhang Hao, Deng Xueliang, Shi Chun'e. Application of MODIS aerosol products in monitoring visibility [J]. Environmental Science & Technology, 2015, 38(08): 49-55.

[26] Sun Zhiqiang, Ji Dongsheng, Song Tao, et al. Observations and comparison analysis of air pollution in Beijing and nearly surrounding areas during Beijing 2008 Olympic games [J]. Environmental Science, 2010, 31(12): 2852-2859.

[27] Wang Yanfang, Zhang Jun. Can environmental regulation improve air quality? An empirical evidence of Beijing Olympic games [J]. China population, resources and environment, 2014, 24(5): 166-168.

[28] Yang Siyue, Wang Feng, Liu Na. Assessment of the air pollution prevention and control action plan in China: a difference-in-difference analysis [J]. China Population, Resources and Environment, 2020, 30(5) :110-117.

[29] Ai Ze, Chen Quanliang. Temporal and spatial distribution of aerosol optical depth in Sichuan and its correlation with meteorological factors [J]. Sichuan Environment, 2019, 38(04): 79-86.

[30] Feng Qing. Study on evolution of spatial correlation structure of carbon emission and its influencing factors in Chengdu-Chongqing urban agglomeration [D]. Xi'an: Xi'an University of Architecture and Technology, 2020.

[31] Zhang Junchi. Policy Research on Ecological Environment Management in Western China [D]. Yangling: Northwest A & F University, 2012.

杨光, 麻金继, 孙二昌, 吴文涵, 郭金雨, 林锡文. 2004-2018 年间中国区域气溶胶时空变化特征研究[J]. 大气与环境光学学报, 2021, 16(5): 443. YANG Guang, MA Jinji, SUN Erchang, WU Wenhan, GUO Jinyu, LIN Xiwen. Spatio-Temporal Characteristics of Aerosols in China During 2004-2018[J]. Journal of Atmospheric and Environmental Optics, 2021, 16(5): 443.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!