激光技术, 2022, 46 (5): 668, 网络出版: 2022-10-14  

基于FBG的复合材料环形构件残余应变研究

Research on surface residual strain of composite ring component based on FBG
作者单位
1 武汉理工大学 光纤传感技术国家工程实验室, 武汉 430070
2 武汉理工大学 机电工程学院, 武汉 430070
3 航天材料及工艺研究所, 北京 100076
摘要
为了解决因碳纤维/环氧树脂复合材料构件中树脂基体与碳纤维间的热膨胀系数存在差异, 热压成型后, 内部未释放的残余应力会使材料构件发生残余应变, 造成构件变形、影响制品质量的问题, 采用光纤布喇格光栅(FBG)传感器在线监测实验研究和有限元仿真分析相结合的研究方法, 进行了理论分析和实验验证, 采集了碳纤维/环氧树脂复合材料环形构件热压罐成型后表面残余应变变化实时数据。结果表明, 该构件下法兰根部应变释放情况复杂, 靠近支承位置处的残余应变释放受阻, 而其余监测点位的残余应变普遍在30με~90με的范围内, 与仿真结果相符; FBG传感器能对构件成型后残余应变释放历程进行多点位实时在线监测, 并实现对构件整体应变分布的分析和预警。该研究具有一定科学研究和工程应用意义。
Abstract
In order to solve the problems of component deformation and affecting manufacturing quality caused by the residual strain of material components, which is due to the residual stress after hot pressing by the difference of thermal expansion coefficient between resin matrix and carbon fiber in carbon fiber/epoxy resin composite components. The theoretical analysis and experimental verification were carried out by combining the on-line monitoring experimental research of fiber Bragg grating (FBG) sensor and finite element simulation analysis. The real-time data of surface residual strain of carbon fiber/epoxy composite ring components after hot pressing tank forming were collected. The results show that the strain release at the flange root is complex, the residual strain release near the support is blocked, and the residual strain at other monitoring points is generally 30με~90με. The results are consistent with the simulation results. FBG sensor can carry out multi-point real-time on-line monitoring of the residual strain release process after component forming, and realize the analysis and early warning of the overall strain distribution of the component. The research has certain scientific research and engineering application significance.
参考文献

[1] CHOPRA I. Status of application of smart structures technology to rotorcraft systems[J]. Journal of the American Helicopter Society, 2000, 45(4): 228-252.

[2] KALAYCIOGLU S, SILVA D. Minimization of vibration of spacecraft appendages during shape control using smart structures[J]. Journal of Guidance, Control and Dynamics, 2000, 23(3): 558-561.

[3] TIAN H, WANG J H, JI Y D, et al. Monitoring of curing residual stress by Bragg grating[J]. Materials Reports, 2012, 26(20): 111-114(in Chinese).

[4] ZHANG G M, WANG J H, DING A X, et al. Prediction of curing deformation and residual stress of carbon fiber composite laminates[C]// China International Congress on Composite Materials.Hangzhou: Chinese Society For Composite Materials, 2017: 2(in Chin-ese).

[5] SEROVAEV G, KOSHELEVA N. The study of internal structure of woven glass and carbon fiber reinforced composite materials with embedded fiber-optic sensors[J]. Fracture and Structural Integrity, 2019, 14(51): 225-235.

[6] CAPELL T F. Applications of embedded chirped fibre Bragg grating sensors for damage and defect detection in composites and composite bonded joints[D]. Surrey,UK: University of Surrey, 2012: 16-37.

[7] HOU Zh Y, LI Y, SHAO H F, et al. Study on composite and strain sensing characteristics of high intensity fiber Bragg grating and carbon fiber[J]. Semiconductor Optoelectronics, 2020, 41(1): 88-91 (in Chinese).

[8] ZHANG Y A, ZHAN L H. Application of fiber Bragg grating in curing of advanced composites[J]. Fiber Reinforced Plastics/Compo-sites, 2016, 43(1): 86-91(in Chinese).

[9] BO D. Embedded fiber-optic sensors in carbon fiber composites for temperature-insensitive and intensity-modulated microdisplacement measurement[C]//IEEE International Conference on Advanced Infocomm Technology. New York, USA: IEEE, 2013: 10-11.

[10] AN T Y, ZHU Q R, WU H. Research on damage detection of composite materials based on fiber Bragg grating sensor[J]. Experimental Technology and Management, 2019,36(6): 72-75(in Chinese).

[11] LI B. Study on curing deformation and residual stress of composite curved surface structure[D]. Shenyang: Shenyang Aerospace University, 2019: 57-100(in Chinese).

[12] WU R J, ZHENG B L. Analysis of strain transfer of surface bonded FBG sensor[J]. Instrument Technique and Sensor, 2016, 53(8): 14-17(in Chinese).

[13] SUN Y J, ZHANG Q, CHENG G, et al. Analysis and experiment of strain transfer characteristics of surface mounted distributed optical fiber sensor based on optical frequency domain reflection technology[J]. Science Technology and Engineering, 2018,18(33): 46-52(in Chinese).

[14] KESAVAN K, RAVISANKAR K, SENTHIL R, et al. FBG sensor technology to interfacial strain measurement in CFRP-strengthened concrete beam[J]. Experimental Techniques, 2015, 39(5) : 21-29.

[15] SUN J X, CHEN Zh Q, YANG X R, et al. Study on temperature sensitivity of CFRP under laser irradiation[J]. Laser Technology,2021,45(3): 280-285(in Chinese).

[16] TAKEDA S, AOKI Y, NAGAO Y, et al. Damage monitoring of CFRP stiffened panels under compressive load using FBG sensors[J]. Composite Structures, 2012, 94(3): 813-819.

[17] MENG Q P, SUN W, WANG Y L, et al. Study on life cycle structural state of carbon fiber composites implanted with FBG[J].Aerospace Material Technology,2018,48(4): 46-50(in Chinese).

[18] VALERII P, NATALIA A, GRIGORII S, et al. Numerical analysis of the strain values obtained by FBG embedded in a composite material using assumptions about uniaxial stress state of the optical fiber and capillary on the Bragg grating[J]. Fracture and Structural Integrity, 2019, 13(49) : 177-189.

[19] GAO L L, WANG Q L, WANG X X, et al. Protection technology of fiber Bragg grating sensor embedded in fiber composite laminate[J]. Acta Materiae Compositae Sinica, 2016,33(11): 2485-2491(in Chinese).

[20] LIU J. Research on theory, method and engineering application of optical fiber sensing strain detection[D]. Wuhan: Wuhan University of Technology,2016: 14-33(in Chinese).

李浩洋, 陈满意, 童杏林, 张翠, 魏敬闯, 何西琴, 孙建波, 耿东兵. 基于FBG的复合材料环形构件残余应变研究[J]. 激光技术, 2022, 46(5): 668. LI Haoyang, CHEN Manyi, TONG Xinglin, ZHANG Cui, WEI Jingchuang, HE Xiqin, SUN Jianbo, GENG Dongbing. Research on surface residual strain of composite ring component based on FBG[J]. Laser Technology, 2022, 46(5): 668.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!