中国激光, 2024, 51 (6): 0612002, 网络出版: 2024-03-13  

基于质心法的高分辨率高探测效率N光子纠缠N00N态超分辨量子成像

Super‐resolution Quantum Imaging of N‐photon Entangled N00N State with High Resolution and High Detection Efficiency Based on Centroid Method
作者单位
1 中国计量大学光学与电子科技学院,浙江 杭州 310018
2 中国电子科技集团有限公司第四十一研究所,山东 青岛 266555
摘要
基于N光子纠缠量子成像的分辨率优势,设计了一种通用的多光子纠缠N00N态的超分辨量子成像系统,理论上成像分辨率可实现(N-1)倍的增加,成像系统的分辨率得到大幅提升。针对N00N态探测效率过低的问题,利用光学质心测量方法,保留所有探测情况,在不需要所有光子到达空间同一点的情况下,通过光子计数和适当的后处理,实现了任意数量光子下成像分辨率的提高。相较于N光子吸收方案,该方法的理论效率增加了DN-1(假设有D个像素)。所提方案可以产生具有高保真度和高稳定性(数天内保持稳定)的N00N态,有利于拓展N00N态的应用范围。所设计的系统在超分辨量子成像领域中具有较好的应用价值。
Abstract
Objective

As a breakthrough technology in recent years, super-resolution imaging has become an important research problem in computer vision and image processing and has wide practical applications in medical, biological, security, and other fields. However, classical imaging technology is limited by the diffraction resolution limit, and it is difficult to achieve resolution breakthroughs. Quantum entanglement can transcend diffraction resolution limits by sharpening spatial interference fringes based on quantum technology evolution . The entangled N00N state has been studied because it can exceed the standard quantum limit. The interference visibility of the three-photon N00N state is higher than the limit of classical spatial super-resolution, and the pattern of the N-photon entangled N00N state is N times finer than that of classical light. Thus, the N00N state can improve the resolution of the optical system by N times. However, the probability of all N photons arriving at the same location and the detection efficiency decreases exponentially with increasing N, making the advantages of the N00N state controversial. The optical centroid measurement (OCM) promotes the application of the N00N state in super-resolution imaging. This study further applies the advantages of N-photon entangled N00N state to super-resolution quantum imaging based on existing theories and technologies. This study further proposes a new quantum imaging system to improve the resolution of object imaging.

Methods

This study primarily adopts theoretical analysis and simulation methods. A simulation model based on the proposed quantum imaging system is created, and the resolution enhancement of our scheme is quantified by measuring the modulation transfer function (MTF). A photon source model is constructed to generate coherent photons that are irradiated onto the object and transmitted to the receiver. The centroid position of the photons is measured using the OCM method, and the point spread function (PSF) of the imaging system is calculated using the obtained simulation data. Finally, the MTF is obtained using the Fourier transform method. In addition to the theoretical analysis of the detection efficiency enhancement of N00N state by OCM, the advantages of OCM visibility are analyzed through simulation visibility. The data are obtained through model simulation, and the curve is fitted to the data point, following the visibility calculation and analysis using the fitted curve.

Results and Discussions

The model simulation of the proposed imaging system shows that the MTF curve decreases with the increase of spatial frequency. However, the entangled two-photon curve changes more gently than the spatially uncorrelated two-photon curve, indicating that the resolution of entangled two-photon imaging is better than that of uncorrelated two-photon imaging. Similarly, the presence of more entangled photons changes the curve at a slower pace. The resolution of (16±2)% is enhanced in the two-photon N00N entangled state, and the resolutions of 4 and 8 photons are 30±3%, and 41±2%, respectively (Fig.2 and Table 1). The results verify the feasibility of the OCM imaging scheme for N-photon entangled N00N state super-resolution imaging. Moreover, the resolution can be enhanced by increasing the number of photons. The visibilities obtained by OCM for classical light and N00N entangled light are compared. The visibility decreases significantly as the number of photons of classical light increases from 2 to 4. The visibilities of 2, 3 and 4 photons are 45±5%,17±4%, and 12±2%, respectively, whereas the visibility obtained by OCM for N00N entangled light remains relatively constant. The obtained visibilities of 2, 3, and 4 photons are 50±4%, (44±2)%, and (42±4)%, respectively (Fig.3), achieving improved visibility.

Conclusions

The quantum imaging system scheme presented in this study improves the detection efficiency of N00N state by means of optical centroid measurement, and exploits the N-photon entanglement of N00N state to realize super-resolution imaging of objects. OCM does not require all photons to reach the same point in space as compared to the N-photon absorption scheme. The resolution of any number of photons can be improved by photon counting and proper post-processing, which significantly improves the detection efficiency of N00N entangled states. Moreover, the visibility of the OCM signal in N00N state is almost independent of the change in photon number N; therefore, the imaging system is suitable for higher photon numbers. The super-resolution quantum imaging system based on N-photon entanglement overcomes the problem in effectively detecting N-photon states, which improves quantum-enhanced measurement. Moreover, it is significant for Heisenberg finite phase detection and the development of super-resolution quantum imaging. Theoretically, the system can enhance N-1 times of image resolution. The prepared N00N state has high fidelity and stability. Thus, it is expected to be more commonly applied in research and promote new progress in the field of super-resolution quantum imaging.

1 引言

超分辨率成像作为近年来的突破性技术,是计算机视觉和图像处理领域中的重要研究内容,在医疗、生物、安防等领域中有着广泛的应用。但经典成像技术受制于衍射分辨极限,难以实现分辨率突破1。随着量子技术的不断发展,研究者利用量子纠缠实现了衍射分辨极限的突破2。其中,纠缠N00N态因可以突破标准量子极限而得到了广泛研究,通过模式k1k2中的N个光子叠加,可以得到N00NψN=12N,0k1,k2+0,Nk1,k2。三光子纠缠N00N态已被实验证明其干涉可见度远高于经典空间超分辨率的极限3,而N光子纠缠N00N态显示的图样比经典光所成图样精细N倍,这表明通过N00N态可将光学系统的分辨率提高N4。这一结果推动了关于N00N态的后续研究5-6及其在量子成像等方面的应用7-8。2022年,Li等8通过深度学习方法将小NN00N态的成像便利性与大NN00N态的良好成像质量优势相结合,推动了N00N态在量子成像方面的应用。然而,N00N态存在一个弱点,即所有N个光子到达同一位置的概率以及探测效率都会随着N的增加呈指数下降9,这使得其优势备受争议。不过光学质心测量(OCM)10的提出又推动了N00N态在超分辨率成像方面的应用研究。OCM技术能实现N倍超分辨率而不需要所有光子到达空间中的同一点,它会跟踪每一个N光子事件,通过适当的后处理后仍可揭示N光子的量子干涉规律。

本文利用N光子纠缠实现了成像分辨率的增强,基于已有理论与技术进一步将N光子纠缠N00N态的优势应用到超分辨量子成像领域,设计了一种新的量子成像系统,该系统的成像分辨率可超越衍射分辨极限。利用OCM方法提升了N00N态的探测效率,当存在D个像素时,相较于N光子吸收方案11,理论探测效率增加了DN-1

2 原理介绍

待成像物体可以用透射孔径函数A(ρ)来描述,其中ρ=(x,y)为物体横坐标。对于波长为λ的空间相干单色均匀光源,物体后的电场为E(ρ)A(ρ)12,相干N光子的量子成像系统像平面上的场强度I(ρ)可以表示为透射孔径函数和点扩散函数(PSF)13卷积的平方模。假设平移不影响PSF,则可以用PSF的宽度表示图像分辨率,并通过σPSF=δ(2)(ρ)运算获得最佳图像,其中,σPSF为点扩散函数,δ(ρ)为点脉冲狄拉克函数。

为了使成像系统传输小于PSF尺寸的物体特征,可用量子相关多光子态代替物平面上的经典场分布以构造显式状态。通过引入质心简化该状态的分析,质心位置(X14和偏差(ξk)定义为

X=1Nk=1Nρkξk=ρk-X,k1,2,,N

式中:ρk为第k个光子的横坐标。在由质心位置X和偏差ξk形成的完整坐标系中,利用质心位置的量子态对图像进行编码。

这里将文献[15]中的理论拓展至N光子,得出N光子质心位置的分辨率损失(r)为

r=Var(δX1+δX2++δXN)N=Var(δX1)+Var(δX2)++Var(δXN)N=σPSFN

式中:δX1,δX2,,δXN分别为N光子的检测横向位置与其入射位置之间的距离;Var·为方差。由此可知,理论上由N光子质心构成的图像的分辨率比空间不相关的经典成像高(N-1)倍,系统的成像精度得到大大提高。

3 超分辨量子成像系统

本节将介绍所设计的一种量子成像系统,其将N00N态在超分辨量子成像方面的应用具体化。该系统包括激光器、N00N态制备模块、成像系统模块、处理模块和锁定测量模块,排布如图1所示。由激光器提供初始泵浦光源,这里选择输出光中心波长为808 nm的飞秒Ti∶Sapphire激光器。N00N态制备模块将激光器提供的泵浦光转换为N个处于N00N态的光子,即耦合为N个路径呈纠缠状态的光子,理论上N可以为2、3、4甚至更多。N00N态的光子经过待成像物体后被成像系统模块接收,成像系统模块根据接收到的信息确定N个光子的位置。而处理模块根据光子位置,采用OCM方法计算出N光子的质心位置并对图像进行编码,通过重复自卷积得到质心PSF,以此评估图像分辨率,从而获得最佳图像。

图 1. 量子成像系统示意图。(a)N00N态制备模块和待成像物体;(b)成像系统模块和处理模块;(c)锁定测量模块

Fig. 1. Schematics of quantum imaging system. (a) N00N state preparation module and object to be imaged; (b) imaging system module and processing module; (c) locking measurement module

下载图片 查看所有图片

3.1 N00N态制备

该模块结构如图1(a)所示,其中激光和I型共线下转换(DC)光的速率相等。二次谐波(SHG)通过周期性极化铌酸锂(PPLN)晶体实现了激光倍频。第一块二向色镜将倍频的激光分为两路。第一路激光先经过可变衰减器,光信号强度得到精确调节,便于后续产生纠缠态时实现特定的相位匹配。该路激光再以45°角穿过半波片1(HWP1),光路方向经反射镜调节后,激光进入水平放置的状态准备偏振分束器(PBS)。第二路激光通过三块二向色镜,经过残留光滤除及相位和角度调节后,进行自发参量下转换以制备DC光。这里选择将泵浦光照射在1 mm厚的BBO晶体上以产生纠缠光子对,BBO晶体为I型相位匹配16。产生的DC光经过偏振片(这里选择方解石偏振片),偏振态改变,并获得相位延迟,然后以0°角穿过HWP2,未转换的激光得到有效过滤。最后在状态准备PBS处与第一路激光会聚并产生偏振匹配。空间重叠后的激光以22.5°角穿过HWP3,并通过干涉滤光片耦合至保偏单模光纤中,再传输至光纤PBS中转换为路径纠缠的N00N态光子。在转换为N00N态时,光纤PBS两臂之间的相对相位可以设置为0,且相对振幅保持平衡17。通过改变激光和DC光之间的相对振幅,可以针对不同N00N态优化光源18。光纤PBS分两路输出,上臂的光以45°角透过HWP4,与下臂的光在50∶50分束器处重叠,经过准直器准直,最后照射至待成像物体上。

上述激光透过HWP的角度可以根据实际需求进行设置,满足相位匹配条件即可。若PBS、50∶50分束器的放置角度发生变化,HWP的角度须相应改变。该系统的使用具有较大的灵活性,可选择实际所需波长的激光输入,使用相应的二向色镜、非线性晶体等器件,在满足生成N光子纠缠N00N态的条件下,确保成像分辨率的增加。

3.2 成像部分

完成N00N态的光子制备后,光通过待成像物体进入成像系统模块,依次经过透镜1、可调孔径和透镜2,最终由感光单元接收并检测,如图1(b)所示。这里采用了单光子敏感的电子倍增CCD(EMCCD)相机作为感光单元19。可调孔径用于调整成像系统的衍射极限,从而补偿衍射极限光斑小于探测器像素尺寸的情况。利用孔径限制传输至EMCCD相机的光束直径,使最小分辨率增大,从而增加衍射极限。EMCCD相机接受入射光并检测光子位置和动量的相关性20。在EMCCD相机曝光后,将收集的电信号统一输入到放大器中进行放大和滤波,再送入到模数转换器(A/D)中转换为数字信号,这些数值即图像数据。将图像数据输入到数字信号处理器中进行后期处理,编码为EMCCD所支持的图像格式、数据格式并存储。

3.3 锁定测量

为了确保N00N态的形成与稳定,该系统还设置了锁定测量模块。通过状态准备PBS的另一个端口,向该模块发送少量的DC光和激光,产生反馈信号以进行“锁定测量”,结构如图1(c)所示。出射的少量DC光和激光通过HWP5进入PBS后被送入压电致动器。这里的PBS创建了一个低保真度的N00N态,为使N00N态得到成功制备,PBS两个臂之间的相位须保持稳定,通过在激光路径中使用压电驱动的长号臂来实现这一点。压电致动器接收低保真度N00N态的相位,跟踪相位漂移并校准,从而实现锁定测量21。如果PBS两个臂之间的相位漂移,则该状态将发生相移,因此压电致动器可以用于跟踪相位漂移。利用压电致动器测量N00N态的相位并校正两个臂之间的相位漂移,N00N态制备模块在数天内保持稳定,从而确保光子能形成高保真度和高稳定性的N00N态,便于后续开展提高成像分辨率的工作。

N00N态的产生效率与光子数测量和质心确定相互关联,共同影响着N00N态的性质和应用效果。较高的产生效率可以提高N00N态的制备成功率,而准确地测量光子数并确定质心位置可以提供精确的光子信息。N00N态的产生效率越高,测量的光子数越多,能够提供更多的统计信息和更精确的分布信息,从而获得更多的有效事件以估计质心的位置,减小意外事件引起的不确定性。

4 实验仿真与结果分析

4.1 利用调制传递函数分析分辨率的增加

基于所提出的方案构建模型模拟成像系统,使用倾斜边缘标准测量调制传递函数(MTF),从而量化分辨率增加能力。构建光子源模型生成相干光子,照射物体后传输至接收器,用OCM方法测量光子的质心位置。利用所得模拟数据计算该成像系统的PSF,对其进行傅里叶变换得到MTF。

MTF曲线表示对比度变化程度与空间频率的关系,用于评价成像质量。图2(a)给出了双光子在空间不相关状态与N00N纠缠态下的仿真MTF曲线,并与双光子N00N态理论的分辨率增加曲线进行对比。随着空间频率的增加,MTF曲线逐渐下降,但相较于空间不相关的双光子,纠缠双光子的曲线变化更为平缓,表明在相同空间频率处,N00N态的MTF值更高,而高MTF值意味着双光子纠缠成像在更高的空间频率下仍然能保持较好的细节传输能力,这使系统可以更好地捕捉和还原高频细节信息。高频细节对应着图像中的细小细节和边缘,当MTF的下降更平缓时,成像系统可以更好地捕捉到图像中的边缘信息,准确地再现它们,避免了细节信息的丢失或模糊,提高了图像的局部对比度和细节准确性,进而可得到更清晰、更详细的图像,从而实现分辨率增加。此外,MTF的下降更平缓意味着PSF的尖锐程度更高,即光斑的空间分布更集中,图像细节更加清晰和精确,成像能力更好。与理论曲线相比,实际仿真所得的双光子MTF曲线对高频信息的分辨能力较弱,但相较于41%的理论分辨率增加上限,其分辨率仍能实现(16±2)%的增加,验证了纠缠N00N态实现超分辨量子成像的可行性。

图 2. MTF曲线。(a)在非相关态和N00N态双光子的仿真曲线和理论分辨率增加曲线的对比;(b)二、四、八光子纠缠N00N态的分辨率增加对比

Fig. 2. MTF curves. (a) Comparison of simulation curves of two-photon in uncorrelated state and N00N state and theoretical resolution enhancement curve; (b) resolution enhancement comparison of two-, four- and eight-photon entangled N00N states

下载图片 查看所有图片

根据MTF的截止频率计算分辨率,结果如表1所示。这里还选择了双光子、四光子和八光子纠缠的情况进行对比,如图2(b)所示。可以直观地看出,光子数越大,MTF曲线的下降越缓慢,越多的高频细节得到保留,这表明纠缠光子数的增加使得分辨率的增加更为明显。综合上述分析,利用OCM方法进行N光子纠缠N00N态的超分辨成像,可实现分辨率的增加,且纠缠光子数越多,成像分辨率的增加越明显。考虑到检测效率与EMCCD的量子效率(QE)有关,这里在类实验的QE下计算MTF(使用与实验生成帧相同的处理方法统计模拟帧,从而合成MTF曲线),发现MTF的退化并不如预期般剧烈。此外,噪声会影响图像的倾斜边缘,为了契合实验的真实性,仿真的信噪比(SNR)并未选择理想情况。分析发现,与实验噪声类似的随机分布噪声对于通过计算倾斜边缘MTF来定量评估分辨率是不利的,不相关噪声事件的存在导致许多错误估计的质心被检测到,这是未实现理论分辨率增加的原因之一。此外,像素强度中的散粒噪声及质心估计图像的稀疏性导致OCM方法得到的MTF曲线的本底噪声较高。

表 1. 分辨率增加量的对比

Table 1. Comparison of resolution enhancement

PhotonTwo photonsFour photonsEight photons
Resolution enhancement /%16±230±341±2

查看所有表

受实验条件、测量误差等的影响,真实实验时的参数无法与仿真所设置的参数完全相同,且受到环境等因素的影响,系统存在不确定性,故无法避免差异。仿真时尽可能采用类似于实验的条件以提高结果的可靠性。

4.2 OCM方法应用于N00N态实现的可见度提升

这里还通过仿真估计了不同光子数下的质心,从而计算可见度。利用多个单光子计数模块进行探测,通过模型仿真得到数据,将曲线拟合到数据点,计算可见度并进行分析。随着光子数的增加,经典光的可见度明显降低,三、四光子的可见度分别为(17±4)%(12±2)%,如图3所示。而运用OCM方法得到的N00N态纠缠光的可见度较高,三、四光子的可见度分别为(44±2)%(42±4)%。这里还在图3(e)中展示了可见度与光子数的关系,发现使用OCM方法后经典光也可以实现图像的增强,但其可见度会随光子数N的增加呈现1/2N-1的指数下降,而N00N态下的图像可见度则相对保持恒定。由此可见,相较于经典光下的图像可见度随光子数的增加而衰减的弊端,对N00N态使用OCM方法,图像的可见度远超经典极限,且受光子数的影响很小,几乎与N无关,OCM方法适用于较高的光子数。

图 3. 经典光与N00N态纠缠光的质心测量结果。(a)三、(b)四光子经典光质心测量的结果;(c)三、(d)四光子N00N态下质心测量的结果;(e)可见度与光子数的关系

Fig. 3. Centroid measurement results of classical light and entangled light with N00N state. Centroid measurement results of (a) three- and (b) four-photon classical light; centroid measurement results under (c) three- and (d) four-photon N00N states; (e) relationship between visibility and photon number

下载图片 查看所有图片

这里通过测量N00N态的空间干涉模式计算所得的可见度与先前同类研究422的结果较为接近,该方法具备可靠性。提升可见度并保持其稳定性在成像中起到关键作用。将OCM方法运用于N00N态,可实现成像分辨率和可见度的提升,且随着光子数的增加,分辨率增加量进一步提升,同时能保持可见度相对恒定。由于具有超分辨率和高可见度,N00N态未来可能在成像领域和可视化领域中得到广泛的应用。

5 结论

设计了量子成像系统,通过光学质心测量方法提升了N00N态的探测效率,发挥了N光子纠缠N00N态的优势,实现了物体的超分辨率成像。与N光子吸收方案相比,OCM不需要所有光子到达空间中的同一点,通过光子计数和适当的后处理就可以实现任意数量光子下成像分辨率的提高,大大提升了N00N态的探测效率。N00N态的OCM信号的可见度几乎与光子数N无关,因此该成像系统适用于更高的光子数。基于N光子纠缠的超分辨量子成像系统克服了N00N态的探测效率随着纠缠光子数的增加而呈指数下降的问题,有利于量子增强测量,并对海森堡有限相位检测和超分辨率量子成像的发展具有重要意义。该系统的成像分辨率在理论上能达到(N-1)倍的增加,且制备的N00N态具有高保真度和高稳定性。不过这里的方案仅是较佳实例,分辨率增加量未能达到理论计算值。后续有必要对N光子查找的算法、系统结构中的器件等进行优化,从而在实际成像中获得更显著的分辨率增加。

参考文献

[1] Rayleigh Lord. XXXI. Investigations in optics, with special reference to the spectroscope[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1879, 8(49): 261-274.

[2] Boto A N, Kok P, Abrams D S, et al. Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit[J]. Physical Review Letters, 2000, 85(13): 2733-2736.

[3] Kim Y S, Kwon O, Lee S M, et al. Observation of Young’s double-slit interference with the three-photon N00N state[J]. Optics Express, 2011, 19(25): 24957-24966.

[4] Mitchell M W, Lundeen J S, Steinberg A M. Super-resolving phase measurements with a multiphoton entangled state[J]. Nature, 2004, 429(6988): 161-164.

[5] Chen Y, Lee C, Lu L, et al. Quantum plasmonic N00N state in a silver nanowire and its use for quantum sensing[J]. Optica, 2018, 5(10): 1229-1235.

[6] Migliore A, Messina A. Quantum optics parity effect on generalized N00N states and its implications for quantum metrology[J]. Annalen Der Physik, 2022, 534(12): 2200304.

[7] Georgi P, Massaro M, Luo K H, et al. Metasurface interferometry toward quantum sensors[J]. Light: Science & Applications, 2019, 8: 70.

[8] Li F R, Sun Y F, Zhang X D. Deep-learning-based quantum imaging using N00N states[J]. Journal of Physics Communications, 2022, 6(3): 035005.

[9] Steuernagel O. On the concentration behaviour of entangled photons[J]. Journal of Optics B: Quantum and Semiclassical Optics, 2004, 6(6): S606-S609.

[10] Tsang M. Relationship between resolution enhancement and multiphoton absorption rate in quantum lithography[J]. Physical Review A, 2007, 75(4): 043813.

[11] Giovannetti V, Lloyd S, Maccone L, et al. Sub-Rayleigh-diffraction-bound quantum imaging[J]. Physical Review A, 2009, 79(1): 013827.

[12] Unternährer M, Bessire B, Gasparini L, et al. Super-resolution quantum imaging at the Heisenberg limit[J]. Optica, 2018, 5(9): 1150-1154.

[13] Aspelmeier T, Egner A, Munk A. Modern statistical challenges in high-resolution fluorescence microscopy[J]. Annual Review of Statistics and Its Application, 2015, 2: 163-202.

[14] Tsang M. Quantum imaging beyond the diffraction limit by optical centroid measurements[J]. Physical Review Letters, 2009, 102(25): 253601.

[15] Toninelli E, Moreau P A, Gregory T, et al. Resolution-enhanced quantum imaging by centroid estimation of biphotons[J]. Optica, 2019, 6(3): 347-353.

[16] Di Domenico G, Pearl S, Karnieli A, et al. Direct generation of high brightness path entangled N00N states using structured crystals and shaped pump beams[J]. Optics Express, 2022, 30(12): 21535-21543.

[17] Afek I, Ambar O, Silberberg Y. High-NOON states by mixing quantum and classical light[J]. Science, 2010, 328(5980): 879-881.

[18] Ra Y S, Lim H T, Oh J E, et al. Phase and amplitude controlled heralding of N00N states[J]. Optics Express, 2015, 23(24): 30807-30814.

[19] Defienne H, Cameron P, Ndagano B, et al. Pixel super-resolution with spatially entangled photons[J]. Nature Communications, 2022, 13: 3566.

[20] Edgar M P, Tasca D S, Izdebski F, et al. Imaging high-dimensional spatial entanglement with a camera[J]. Nature Communications, 2012, 3: 984.

[21] Rozema L A, Bateman J D, Mahler D H, et al. Scalable spatial superresolution using entangled photons[J]. Physical Review Letters, 2014, 112(22): 223602.

[22] MüllerM, VuralH, MichlerP. Phase super-resolution with N00N states generated by on demand single-photon sources[EB/OL]. (2016-03-02)[2023-03-05]. https:∥arxiv.org/abs/1603.00906.

张黄杰, 陈晨远, 郝然, 占春连, 金尚忠, 张鹏举, 庄新港, 费丰. 基于质心法的高分辨率高探测效率N光子纠缠N00N态超分辨量子成像[J]. 中国激光, 2024, 51(6): 0612002. Huangjie Zhang, Chenyuan Chen, Ran Hao, Chunlian Zhan, Shangzhong Jin, Pengju Zhang, Xingang Zhuang, Feng Fei. Super‐resolution Quantum Imaging of N‐photon Entangled N00N State with High Resolution and High Detection Efficiency Based on Centroid Method[J]. Chinese Journal of Lasers, 2024, 51(6): 0612002.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!