激光技术, 2022, 46 (5): 702, 网络出版: 2022-10-14  

Cs-N2系统中精细结构能量交换的作用

Role of fine structure energy exchange in Cs-N2 system
作者单位
1 新疆大学 物理科学与技术学院, 乌鲁木齐 830046
2 西南技术物理研究所, 成都 610041
摘要
为了讨论缓冲气体对碱原子精细结构能级间的能量交换加速作用, 利用激光感应荧光光谱对Cs(Rb)-N2系统中的精细结构碰撞能量转移过程进行了实验研究, 获得了不同条件下碱原子D1线和D2线的荧光变化数据。结果表明, 在Cs-N2系统中, N2分子更多参与精细结构能量交换的加速过程;在340K时, 系统具有高的荧光转换效率;在Rb-N2系统中, N2分子主要参与猝灭过程, 对精细结构碰撞的增益作用不明显。这一结果可为半导体抽运碱金属激光器的高效运行提供参考数据。
Abstract
In order to discuss the acceleration of energy exchange between fine structure energy levels of alkali atoms by buffer gas, the energy transfer process of fine structure collision in Cs(Rb)-N2 system were investigated experimentally by laser induced fluorescence spectroscopy. The fluorescence data of D1 and D2 lines of alkali atoms were obtained under different conditions. The experimental results show that N2 molecules are more involved in the acceleration of fine structure energy exchange in the Cs-N2 system, and the system has a high fluorescence conversion efficiency at 340K. In the Rb-N2 system, N2 molecules mainly participate in the quenching process, and the gain effect on the fine structure collision is not obvious. The results can provide reference data for the efficient operation of the semiconductor pumped alkali laser.
参考文献

[1] KRUPKE W F, BEACH R J, KANZ V K, et al. Resonance transition 795nm rubidium laser[J]. Optics Letters, 2003, 28(23): 2336-2338.

[2] YU J H, ZHU Q, QUAN H Y, et al. High power alkali vapor laser used in geo-synchronous satellite launching[J]. Laser & Optoelectronics Progress, 2007, 44(11): 18-23 (in Chinese).

[3] ZHAO Ch M, WANG Y Sh, GUO L D, et al. Development of laser wireless power transmission technology[J]. Laser Technology, 2020, 44(5): 538-545 (in Chinese).

[4] AUSLENDER I, YACOBY E, BARMASHENKO B, et al. Controlling the beam quality in DPALs by changing the resonator parameters[J]. Applied Physics, 2020, B126(4): 91-97.

[5] BISWAL R, MISHRA G K, AGRAWAL S K, et al. Studies on the design and parametric effects of a diode pump alkali (rubidium) laser[J]. Joutnsl og Pramana, 2019, 93(4): 58-67.

[6] SHEN B L, XU X Q, XIA Ch Sh, et al. Modeling of the static and flowinggas ring LD sidepumped alkali vapor amplifiers[J]. Applied Physics, 2016, B122(7): 210-216.

[7] CAI H, WANG Y, XUE L P, et al. Theoretical study of relaxation oscillations in a free-running diode-pumped rubidium vapor laser [J]. Applied Physics, 2014, B117(10): 1201-1210.

[8] WAICHMAN K, BARMASHENKO B, ROSENWAKS S. Laser power, cell temperature, and beam quality dependence on cell length of static Cs DPAL[J]. Journal of the Optical Society of America, 2017, B34(2): 279-286.

[9] ZHDANOV B V, ROTONDARO M D, SHAFFER M K, et al. Potassium diode pumped alkali laser demonstration using a closed cycle flowing system[J]. Optics Communications, 2015, 354(8): 256-258.

[10] YACOBY E, AUSLENDER I, WAICHMAN K, et al. Analysis of continuous wave diode pumped cesium laser with gas circulation: Experimental and theoretical studies[J].Optics Express, 2018, 26(14): 17814-17819.

[11] WEEKS D E, LEWIS C D, SCHLIE L A, et al. Temperature dependence of the fne structure mixing induced by 4He and 3He in K and Rb diode pumped alkali lasers[J]. Applied Physics, 2020, B126(4): 79-88.

[12] GAVRIELIDS A, SCHLIE L A, LOPER R D, et al. Analytic treatment of beam quality and power efficiency in a highpower transverse flow diode pumped alkali laser[J]. Journal of the Optical Society of America, 2018, B35(9): 2202-2210.

[13] PITZ G A, ANDERSON M D. Recent advances in optically pumped alkali lasers[J]. Applied Physics Reviews, 2017, 4(4): 041101.

[14] ZWEIBACK J, KRUPKE W F. 28W average power hydrocarbon-free rubidium diode pumped alkali laser[J]. Optics Express, 2010, 18(2): 1444-1448.

[15] WANG D G, WANG X Y, ZHOU D D, et al. Rotational and vibrational state distributions of CsH and relative reactivity in reactions of Cs(62D, 72D) with H2[J]. Chinese Physics Letters, 2010, 27(4): 043402.

[16] ZHOU D D, WANG D G, WANG X Y, et al. Cross sections for Cs(6Dj)→Cs(7Dj′) collisional transfer processes induced by H2[J]. Laser Journal, 2010, 31(1): 28-29 (in Chinese).

[17] LIU Z N, LIU J, LIU B, et al. Experimental evaluation of collisional transfer cross section in Rb-N2 system[J]. Optoelectronics, 2018, 8(2): 51-58 (in Chinese).

[18] THEODOSIOU C E. Lifetimes of alkali-metal-atom Rydberg states[J]. Physical Review, 1984, A30(6): 2881-2909.

[19] ALCOCK C B, ITKIN V P, HORRIGAN M K. Vapour pressure equations for the metallic elements: 298-2500K[J]. The Canadian Journal of Metallurgy and Materials Science, 1984, 23(3): 309-313.

[20] LI Y Y, YIN G Q, DAI K, et al. Fluorescence spectrum of cesium vapor resonantly excited by the 852.3nm laser line[J]. Spectroscopy and Spectral Analysis, 2006, 26(9): 1624-1626 (in Chinese).

[21] KERAMATI B, MASTERS M, HUENNEKENS J. Excitation-transfer collisions in cesium vapor: Cs(5D5/2)+Cs(6S1/2)→Cs (5D3/2)+Cs(6S1/2)phys[J]. Physical Review, 1988, A38(9): 4518-4523.

刘静, 聂琨璞, 杨蛟, 王浟, 安国斐, 戴康. Cs-N2系统中精细结构能量交换的作用[J]. 激光技术, 2022, 46(5): 702. LIU Jing, NIE Kunpu, YANG Jiao, WANG You, AN Guofei, DAI Kang. Role of fine structure energy exchange in Cs-N2 system[J]. Laser Technology, 2022, 46(5): 702.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!